{"title":"Combustion of Inhomogeneous Titanium + Carbon Black Powder Mixture","authors":"S. V. Kostin, P. M. Krishenik","doi":"10.3103/S1061386223040064","DOIUrl":null,"url":null,"abstract":"<p>The stability of combustion of titanium + carbon black powder mixture to a local excess of the component was experimentally studied. The influence of the spreading of titanium melt or liquid reaction product on the stability of the combustion transition through transverse carbon powder barrier was considered. The direction of melt movement with respect to the front propagation direction was determined. It was shown that the stability of the combustion transition through the barrier is determined by thermal interaction between the combustion wave and the barrier and is not directly related to the convective heat transfer by the melt.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 4","pages":"254 - 257"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386223040064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The stability of combustion of titanium + carbon black powder mixture to a local excess of the component was experimentally studied. The influence of the spreading of titanium melt or liquid reaction product on the stability of the combustion transition through transverse carbon powder barrier was considered. The direction of melt movement with respect to the front propagation direction was determined. It was shown that the stability of the combustion transition through the barrier is determined by thermal interaction between the combustion wave and the barrier and is not directly related to the convective heat transfer by the melt.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.