Improving the marine biodegradability of poly(alkylene succinate)-based copolymers

IF 2.3 4区 化学 Q3 POLYMER SCIENCE
Sumito Kumagai, Senri Hayashi, Atsushi Katsuragi, Motosuke Imada, Kaoko Sato, Hideki Abe, Noriyuki Asakura, Yasumasa Takenaka
{"title":"Improving the marine biodegradability of poly(alkylene succinate)-based copolymers","authors":"Sumito Kumagai, Senri Hayashi, Atsushi Katsuragi, Motosuke Imada, Kaoko Sato, Hideki Abe, Noriyuki Asakura, Yasumasa Takenaka","doi":"10.1038/s41428-023-00871-9","DOIUrl":null,"url":null,"abstract":"We report the syntheses of novel marine biodegradable poly(ethylene succinate) (PES)- and poly(butylene succinate) (PBS)-based copolymers containing different dicarboxylic acid (DCA) units with various carbon numbers and different feed ratios. Biochemical oxygen demand tests demonstrated that some of the obtained PES- and PBS-based copolymers were biodegradable in seawater. Specifically, polymers with longer-chain DCA units, even at low contents, exhibited marine biodegradability. The thermomechanical properties of the copolymers, such as their thermal stabilities, melting points, glass transition temperatures, tensile moduli, strains at break, and stresses at break, also varied with the DCA contents. These results indicated that the thermomechanical properties and the marine biodegradabilities of the PES- and PBS-based copolymers were regulated by controlling their structures and DCA contents. The polymers obtained in this study may replace general-purpose polymers. Our approach may also be applicable to other polymeric materials. Furthermore, our findings pave the way for the rational design and preparation of polymeric materials that are biodegradable in environments other than oceans and have good thermomechanical properties. We report the syntheses of novel marine biodegradable poly(ethylene succinate) (PES)- and poly(butylene succinate) (PBS)-based copolymers containing different dicarboxylic acid (DCA) units with various carbon numbers and different feed ratios. Specifically, the copolymers with longer-chain DCA units, even at low contents, exhibited marine biodegradability. The thermomechanical properties also varied with the DCA contents. These results indicated that the thermomechanical properties and the marine biodegradability of the PES- and PBS-based copolymers were regulated by controlling their structures and DCA contents.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"56 4","pages":"419-429"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41428-023-00871-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-023-00871-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We report the syntheses of novel marine biodegradable poly(ethylene succinate) (PES)- and poly(butylene succinate) (PBS)-based copolymers containing different dicarboxylic acid (DCA) units with various carbon numbers and different feed ratios. Biochemical oxygen demand tests demonstrated that some of the obtained PES- and PBS-based copolymers were biodegradable in seawater. Specifically, polymers with longer-chain DCA units, even at low contents, exhibited marine biodegradability. The thermomechanical properties of the copolymers, such as their thermal stabilities, melting points, glass transition temperatures, tensile moduli, strains at break, and stresses at break, also varied with the DCA contents. These results indicated that the thermomechanical properties and the marine biodegradabilities of the PES- and PBS-based copolymers were regulated by controlling their structures and DCA contents. The polymers obtained in this study may replace general-purpose polymers. Our approach may also be applicable to other polymeric materials. Furthermore, our findings pave the way for the rational design and preparation of polymeric materials that are biodegradable in environments other than oceans and have good thermomechanical properties. We report the syntheses of novel marine biodegradable poly(ethylene succinate) (PES)- and poly(butylene succinate) (PBS)-based copolymers containing different dicarboxylic acid (DCA) units with various carbon numbers and different feed ratios. Specifically, the copolymers with longer-chain DCA units, even at low contents, exhibited marine biodegradability. The thermomechanical properties also varied with the DCA contents. These results indicated that the thermomechanical properties and the marine biodegradability of the PES- and PBS-based copolymers were regulated by controlling their structures and DCA contents.

Abstract Image

Abstract Image

提高聚(琥珀酸烯酯)基共聚物的海洋生物可降解性
我们报告了新型海洋生物可降解聚(琥珀酸乙烯酯)(PES)和聚(琥珀酸丁烯酯)(PBS)共聚物的合成过程,这些共聚物含有不同碳数和不同进料比的二羧酸(DCA)单元。生化需氧量测试表明,所获得的一些聚醚砜和丁二酸丁二醇酯共聚物可在海水中生物降解。特别是含有长链 DCA 单元的聚合物,即使含量较低,也表现出海洋生物可降解性。共聚物的热力学性质,如热稳定性、熔点、玻璃化转变温度、拉伸模量、断裂应变和断裂应力也随 DCA 含量的变化而变化。这些结果表明,通过控制 PES 和 PBS 共聚物的结构和 DCA 含量,可以调节它们的热力学性质和海洋生物降解性。本研究获得的聚合物可替代通用聚合物。我们的方法也可能适用于其他聚合物材料。此外,我们的研究结果还为合理设计和制备可在海洋以外的环境中生物降解并具有良好热机械性能的聚合物材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Journal
Polymer Journal 化学-高分子科学
CiteScore
5.60
自引率
7.10%
发文量
131
审稿时长
2.5 months
期刊介绍: Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews. Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below: Polymer synthesis and reactions Polymer structures Physical properties of polymers Polymer surface and interfaces Functional polymers Supramolecular polymers Self-assembled materials Biopolymers and bio-related polymer materials Polymer engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信