{"title":"Preparation and characterization of CS/PAT/ MWCNT@MgAl-LDHs nanocomposite for Cd2+ removal and 4-nitrophenol reduction","authors":"Mohammad Saeid Rostami, Mohammad Mehdi Khodaei","doi":"10.1007/s40201-023-00885-8","DOIUrl":null,"url":null,"abstract":"<div><p>The present study evaluated the performance of multiwalled carbon nanotube (MWCNT)@MgAl-layered double hydroxide (LDH) nanoparticles loaded on poly-2 aminothiazole (PAT)/chitosan (CS) matrix (CPML) to remove Cd<sup>2+</sup> ions from aqueous solution. The removal efficiency of modified CS/PAT with MWCNT@MgAl-LDHs was increased significantly compared to pure CS/PAT. The influence of heavy metal ion concentration, pH, temperature, adsorbent dosage, and contact time on the adsorption was examined. The optimum conditions for the adsorption of Cd<sup>2+</sup> ions were 25 <sup>0</sup>C with the adsorbent dosage of 0.06 g and initial concentration for adsorption of the Cd<sup>2+</sup> 100 mg/L at pH = 8. The maximum adsorption capacity was measured to be 1106.19 mg/g. The values of thermodynamic parameters namely Gibbs free energy (ΔG°), entropy change (ΔS°), and enthalpy change (ΔH°) indicated the feasibility, spontaneity and the endothermic nature of the adsorption process, respectively. The pseudo-second-order kinetics and the Langmuir model were selected as the best models for the adsorption process. Also, CPML nanocomposite (NC) was successfully tested for p-nitrophenol (p-NP) reduction in the presence of NaBH<sub>4</sub>. The reaction was nearly completed in 6 min. The fabricated CPML-NC could be reused for three consecutive cycles.</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"22 1","pages":"179 - 195"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40201-023-00885-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present study evaluated the performance of multiwalled carbon nanotube (MWCNT)@MgAl-layered double hydroxide (LDH) nanoparticles loaded on poly-2 aminothiazole (PAT)/chitosan (CS) matrix (CPML) to remove Cd2+ ions from aqueous solution. The removal efficiency of modified CS/PAT with MWCNT@MgAl-LDHs was increased significantly compared to pure CS/PAT. The influence of heavy metal ion concentration, pH, temperature, adsorbent dosage, and contact time on the adsorption was examined. The optimum conditions for the adsorption of Cd2+ ions were 25 0C with the adsorbent dosage of 0.06 g and initial concentration for adsorption of the Cd2+ 100 mg/L at pH = 8. The maximum adsorption capacity was measured to be 1106.19 mg/g. The values of thermodynamic parameters namely Gibbs free energy (ΔG°), entropy change (ΔS°), and enthalpy change (ΔH°) indicated the feasibility, spontaneity and the endothermic nature of the adsorption process, respectively. The pseudo-second-order kinetics and the Langmuir model were selected as the best models for the adsorption process. Also, CPML nanocomposite (NC) was successfully tested for p-nitrophenol (p-NP) reduction in the presence of NaBH4. The reaction was nearly completed in 6 min. The fabricated CPML-NC could be reused for three consecutive cycles.
期刊介绍:
Journal of Environmental Health Science & Engineering is a peer-reviewed journal presenting timely research on all aspects of environmental health science, engineering and management.
A broad outline of the journal''s scope includes:
-Water pollution and treatment
-Wastewater treatment and reuse
-Air control
-Soil remediation
-Noise and radiation control
-Environmental biotechnology and nanotechnology
-Food safety and hygiene