Arkady Zgonnikov , Niek Beckers , Ashwin George , David Abbink , Catholijn Jonker
{"title":"Nudging human drivers via implicit communication by automated vehicles: Empirical evidence and computational cognitive modeling","authors":"Arkady Zgonnikov , Niek Beckers , Ashwin George , David Abbink , Catholijn Jonker","doi":"10.1016/j.ijhcs.2024.103224","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding behavior of human drivers in interactions with automated vehicles (AV) can aid the development of future AVs. Existing investigations of such behavior have predominantly focused on situations in which an AV a priori needs to take action because the human has the right of way. However, future AVs might need to proactively manage interactions even if they have the right of way over humans, e.g., a human driver taking a left turn in front of the approaching AV. Yet it remains unclear how AVs could behave in such interactions and how humans would react to them. To address this issue, here we investigated behavior of human drivers (N = 19) when interacting with an oncoming AV during unprotected left turns in a driving simulator experiment. We measured the outcomes (Go or Stay) and timing of participants’ decisions when interacting with an AV which performed subtle longitudinal nudging maneuvers, e.g. briefly decelerating and then accelerating back to its original speed. We found that participants’ behavior was sensitive to deceleration nudges but not acceleration nudges. We compared the obtained data to predictions of several variants of a drift-diffusion model of human decision making. The most parsimonious model that captured the data hypothesized noisy integration of dynamic information on time-to-arrival and distance to a fixed decision boundary, with an initial accumulation bias towards the Go decision. Our model not only accounts for the observed behavior but can also flexibly generate predictions of human responses to arbitrary longitudinal AV maneuvers, and can be used for both informing future studies of human behavior and incorporating insights from such studies into computational frameworks for AV interaction planning.</p></div>","PeriodicalId":54955,"journal":{"name":"International Journal of Human-Computer Studies","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1071581924000089/pdfft?md5=cea8fbf81c59486face65471c91aebea&pid=1-s2.0-S1071581924000089-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Human-Computer Studies","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071581924000089","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding behavior of human drivers in interactions with automated vehicles (AV) can aid the development of future AVs. Existing investigations of such behavior have predominantly focused on situations in which an AV a priori needs to take action because the human has the right of way. However, future AVs might need to proactively manage interactions even if they have the right of way over humans, e.g., a human driver taking a left turn in front of the approaching AV. Yet it remains unclear how AVs could behave in such interactions and how humans would react to them. To address this issue, here we investigated behavior of human drivers (N = 19) when interacting with an oncoming AV during unprotected left turns in a driving simulator experiment. We measured the outcomes (Go or Stay) and timing of participants’ decisions when interacting with an AV which performed subtle longitudinal nudging maneuvers, e.g. briefly decelerating and then accelerating back to its original speed. We found that participants’ behavior was sensitive to deceleration nudges but not acceleration nudges. We compared the obtained data to predictions of several variants of a drift-diffusion model of human decision making. The most parsimonious model that captured the data hypothesized noisy integration of dynamic information on time-to-arrival and distance to a fixed decision boundary, with an initial accumulation bias towards the Go decision. Our model not only accounts for the observed behavior but can also flexibly generate predictions of human responses to arbitrary longitudinal AV maneuvers, and can be used for both informing future studies of human behavior and incorporating insights from such studies into computational frameworks for AV interaction planning.
期刊介绍:
The International Journal of Human-Computer Studies publishes original research over the whole spectrum of work relevant to the theory and practice of innovative interactive systems. The journal is inherently interdisciplinary, covering research in computing, artificial intelligence, psychology, linguistics, communication, design, engineering, and social organization, which is relevant to the design, analysis, evaluation and application of innovative interactive systems. Papers at the boundaries of these disciplines are especially welcome, as it is our view that interdisciplinary approaches are needed for producing theoretical insights in this complex area and for effective deployment of innovative technologies in concrete user communities.
Research areas relevant to the journal include, but are not limited to:
• Innovative interaction techniques
• Multimodal interaction
• Speech interaction
• Graphic interaction
• Natural language interaction
• Interaction in mobile and embedded systems
• Interface design and evaluation methodologies
• Design and evaluation of innovative interactive systems
• User interface prototyping and management systems
• Ubiquitous computing
• Wearable computers
• Pervasive computing
• Affective computing
• Empirical studies of user behaviour
• Empirical studies of programming and software engineering
• Computer supported cooperative work
• Computer mediated communication
• Virtual reality
• Mixed and augmented Reality
• Intelligent user interfaces
• Presence
...