Kristen K. Roehling, Rhett P. Hill, Adam M. Daly, Stephen G. Kukolich
{"title":"Ammonia – Formic acid complex: internal rotation analysis, calculations, and new microwave measurements","authors":"Kristen K. Roehling, Rhett P. Hill, Adam M. Daly, Stephen G. Kukolich","doi":"10.1016/j.jms.2024.111884","DOIUrl":null,"url":null,"abstract":"<div><p>New analysis and spectra are reported for the gas-phase ammonia-formic acid complex. Calculations to determine the theoretical barrier to internal rotation were conducted and led to the new internal rotation analysis of the dimer. Using the new analysis and calculations, 12 new lines were measured and assigned and included in the present analysis. This is the first internal rotation analysis for this complex. The measurements were made in the 7–22 GHz range using two Flygare-Balle type pulsed beam Fourier transform microwave (FTMW) spectrometers. The complex was analyzed as a hindered rotor and 20 A and 16 E state transitions were fit with the XIAM5 program. The rotational constants were determined to have the following values: A = 11970.19(9) MHz, B = 4331.479(4) MHz, and C = 3227.144(4) MHz. Rotational constants, quadrupole coupling constants, and internal rotor parameters were fit to the spectrum. Double resonance was used to verify line assignments and access higher frequencies. The barrier to internal rotation was found to be 195.18(7) cm<sup>−1</sup>. High level calculations are in good agreement with experimental values. The calculated V<sub>3</sub> barrier values range from 168.3 to 212.8 cm<sup>−1</sup>.</p></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"400 ","pages":"Article 111884"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022285224000110","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
New analysis and spectra are reported for the gas-phase ammonia-formic acid complex. Calculations to determine the theoretical barrier to internal rotation were conducted and led to the new internal rotation analysis of the dimer. Using the new analysis and calculations, 12 new lines were measured and assigned and included in the present analysis. This is the first internal rotation analysis for this complex. The measurements were made in the 7–22 GHz range using two Flygare-Balle type pulsed beam Fourier transform microwave (FTMW) spectrometers. The complex was analyzed as a hindered rotor and 20 A and 16 E state transitions were fit with the XIAM5 program. The rotational constants were determined to have the following values: A = 11970.19(9) MHz, B = 4331.479(4) MHz, and C = 3227.144(4) MHz. Rotational constants, quadrupole coupling constants, and internal rotor parameters were fit to the spectrum. Double resonance was used to verify line assignments and access higher frequencies. The barrier to internal rotation was found to be 195.18(7) cm−1. High level calculations are in good agreement with experimental values. The calculated V3 barrier values range from 168.3 to 212.8 cm−1.
期刊介绍:
The Journal of Molecular Spectroscopy presents experimental and theoretical articles on all subjects relevant to molecular spectroscopy and its modern applications. An international medium for the publication of some of the most significant research in the field, the Journal of Molecular Spectroscopy is an invaluable resource for astrophysicists, chemists, physicists, engineers, and others involved in molecular spectroscopy research and practice.