{"title":"DTMOS based four-quadrant multiplier/divider with voltage difference transconductance amplifier","authors":"Motkuri Krishna, Bal Chand Nagar","doi":"10.1007/s10470-023-02235-y","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, all portable gadgets must operate at low power in order to increase battery life, increase dependability, and lower the expense of heat dissipation. The four-quadrant multipliers are widely used in signal processing applications such as amplitude modulation, frequency doubling, and adaptive filters. This research proposes a four-quadrant multiplier/divider circuit with Voltage Difference Transconductance Amplifier (VDTA) as the active element. Due to its low power supply and usage of electricity, the suggested four quadrant multiplier/divider circuit is designed with the help of Dynamic Threshold Metal Oxide Semiconductor (DTMOS). Moreover, the proposed design employs a single VDTA as an active element to operate the circuit in a four-quadrant mode for multiplication and division operations. Power usage of the whole circuit is minimized by choosing the voltage supply of 0.2 V. The suggested circuit is created utilizing the Cadence virtuoso GPDK 90 nm technology. Different kinds of performance analyses are estimated to show the effectiveness of the suggested circuit in which the proposed design consumes 0.144 <span>\\(\\mu W\\)</span> as the usage of electricity value. Also, the suggested circuit has 1.7% total harmonic distortion (THD), which is considerably lesser than the existing designs. The bandwidth is 24.54 MHz, and the intermodulation products of the output signal have been calculated. Monte Carlo and THD simulations have been performed in a way that confirms the robustness of the circuit against the technological spread.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"118 2","pages":"371 - 386"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-023-02235-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, all portable gadgets must operate at low power in order to increase battery life, increase dependability, and lower the expense of heat dissipation. The four-quadrant multipliers are widely used in signal processing applications such as amplitude modulation, frequency doubling, and adaptive filters. This research proposes a four-quadrant multiplier/divider circuit with Voltage Difference Transconductance Amplifier (VDTA) as the active element. Due to its low power supply and usage of electricity, the suggested four quadrant multiplier/divider circuit is designed with the help of Dynamic Threshold Metal Oxide Semiconductor (DTMOS). Moreover, the proposed design employs a single VDTA as an active element to operate the circuit in a four-quadrant mode for multiplication and division operations. Power usage of the whole circuit is minimized by choosing the voltage supply of 0.2 V. The suggested circuit is created utilizing the Cadence virtuoso GPDK 90 nm technology. Different kinds of performance analyses are estimated to show the effectiveness of the suggested circuit in which the proposed design consumes 0.144 \(\mu W\) as the usage of electricity value. Also, the suggested circuit has 1.7% total harmonic distortion (THD), which is considerably lesser than the existing designs. The bandwidth is 24.54 MHz, and the intermodulation products of the output signal have been calculated. Monte Carlo and THD simulations have been performed in a way that confirms the robustness of the circuit against the technological spread.
期刊介绍:
Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today.
A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.