Xiaohua Zhu , Ling He , Weiji Liu , Yunxu Luo , Youjian Zhang , Wuji Tang
{"title":"Numerical and experimental investigation on hydraulic-electric rock fragmentation of heterogeneous granite","authors":"Xiaohua Zhu , Ling He , Weiji Liu , Yunxu Luo , Youjian Zhang , Wuji Tang","doi":"10.1016/j.ijmst.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>Hydraulic-electric rock fragmentation (HERF) plays a significant role in improving the efficiency of high voltage pulse rock breaking. However, the underlying mechanism of HERF remains unclear. In this study, considering the heterogeneity of the rock, microscopic thermodynamic properties, and shockwave time domain waveforms, based on the shockwave model, digital imaging technology and the discrete element method, the cyclic loading numerical simulations of HERF is achieved by coupling electrical, thermal, and solid mechanics under different formation temperatures, confining pressure, initial peak voltage, electrode bit diameter, and loading times. Meanwhile, the HERF discharge system is conducive to the laboratory experiments with various electrical parameters and the resulting broken pits are numerically reconstructed to obtain the geometric parameters. The results show that, the completely broken area consists of powdery rock debris. In the pre-broken zone, the mineral cementation of the rock determines the transition of type <em>C</em><sub>Ⅰ</sub> cracks to type <em>C</em><sub>Ⅱ</sub> and type <em>C</em><sub>Ⅲ</sub> cracks. Furthermore, the peak pressure of the shockwave increased with initial peak voltage but decreased with electrode bit diameter, while the wave front time reduced. Moreover, increasing well depth, formation temperature and confining pressure augment and inhibit HERF, but once confining pressure surpassed the threshold of 60 MPa for 152.40, 215.90, and 228.60 mm electrode bits, and 40 MPa for 309.88 mm electrode bits, HERF is promoted. Additionally, for the same kind of rock, the volume and width of the broken pit increase with higher initial peak voltage and rock fissures will promote HERF. Eventually, the electrode drill bit with a 215.90 mm diameter is more suitable for drilling pink granite. This research contributes to a better microscopic understanding of HERF and provides valuable insights for electrode bit selection, as well as the optimization of circuit parameters for HERF technology.</p></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"34 1","pages":"Pages 15-29"},"PeriodicalIF":11.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095268623001659/pdfft?md5=9b7ca0184037a8c28123d3365118a8ba&pid=1-s2.0-S2095268623001659-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095268623001659","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0
Abstract
Hydraulic-electric rock fragmentation (HERF) plays a significant role in improving the efficiency of high voltage pulse rock breaking. However, the underlying mechanism of HERF remains unclear. In this study, considering the heterogeneity of the rock, microscopic thermodynamic properties, and shockwave time domain waveforms, based on the shockwave model, digital imaging technology and the discrete element method, the cyclic loading numerical simulations of HERF is achieved by coupling electrical, thermal, and solid mechanics under different formation temperatures, confining pressure, initial peak voltage, electrode bit diameter, and loading times. Meanwhile, the HERF discharge system is conducive to the laboratory experiments with various electrical parameters and the resulting broken pits are numerically reconstructed to obtain the geometric parameters. The results show that, the completely broken area consists of powdery rock debris. In the pre-broken zone, the mineral cementation of the rock determines the transition of type CⅠ cracks to type CⅡ and type CⅢ cracks. Furthermore, the peak pressure of the shockwave increased with initial peak voltage but decreased with electrode bit diameter, while the wave front time reduced. Moreover, increasing well depth, formation temperature and confining pressure augment and inhibit HERF, but once confining pressure surpassed the threshold of 60 MPa for 152.40, 215.90, and 228.60 mm electrode bits, and 40 MPa for 309.88 mm electrode bits, HERF is promoted. Additionally, for the same kind of rock, the volume and width of the broken pit increase with higher initial peak voltage and rock fissures will promote HERF. Eventually, the electrode drill bit with a 215.90 mm diameter is more suitable for drilling pink granite. This research contributes to a better microscopic understanding of HERF and provides valuable insights for electrode bit selection, as well as the optimization of circuit parameters for HERF technology.
期刊介绍:
The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.