{"title":"In silico screening of potential plant peptides against the Non-structural proteins of Dengue virus.","authors":"G Reena, R Ranjani, D Gowtham, K Sangeetha","doi":"10.4103/0972-9062.393979","DOIUrl":null,"url":null,"abstract":"<p><strong>Background objectives: </strong>Peptides isolated from different sources of plants have the advantages of specificity, lower toxicity, and increased therapeutic effects; hence, it is necessary to search for newer antivirals from plant sources for the treatment of dengue viral infections.</p><p><strong>Methods: </strong>In silico screening of selected plant peptides against the non-structural protein 1, NS3 protease domain (NS2B-NS3Pro) with the cofactor and ATPase/Helicase domain (NS3 helicase domain/NS3hel) of Dengue virus was performed. The physicochemical characteristics of the peptides were calculated using Protparam tools, and the allergenicity and toxicity profiles were assessed using allergenFP and ToxinPred, respectively.</p><p><strong>Results: </strong>Among the tested compounds, Ginkbilobin demonstrated higher binding energy against three tested non-structural protein targets. Kalata β-8 demonstrated maximum binding energy against NSP-1 and NSP-2, whereas Circulin A acted against the NSP3 protein of the dengue virus.</p><p><strong>Interpretation conclusion: </strong>Hence, the three compounds identified by in silico screening can be tested further for in vitro studies, which could act as potential leads as they are involved in hampering the replication of the dengue virus by interacting with the three prime non-structural proteins.</p>","PeriodicalId":17660,"journal":{"name":"Journal of Vector Borne Diseases","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vector Borne Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/0972-9062.393979","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background objectives: Peptides isolated from different sources of plants have the advantages of specificity, lower toxicity, and increased therapeutic effects; hence, it is necessary to search for newer antivirals from plant sources for the treatment of dengue viral infections.
Methods: In silico screening of selected plant peptides against the non-structural protein 1, NS3 protease domain (NS2B-NS3Pro) with the cofactor and ATPase/Helicase domain (NS3 helicase domain/NS3hel) of Dengue virus was performed. The physicochemical characteristics of the peptides were calculated using Protparam tools, and the allergenicity and toxicity profiles were assessed using allergenFP and ToxinPred, respectively.
Results: Among the tested compounds, Ginkbilobin demonstrated higher binding energy against three tested non-structural protein targets. Kalata β-8 demonstrated maximum binding energy against NSP-1 and NSP-2, whereas Circulin A acted against the NSP3 protein of the dengue virus.
Interpretation conclusion: Hence, the three compounds identified by in silico screening can be tested further for in vitro studies, which could act as potential leads as they are involved in hampering the replication of the dengue virus by interacting with the three prime non-structural proteins.
期刊介绍:
National Institute of Malaria Research on behalf of Indian Council of Medical Research (ICMR) publishes the Journal of Vector Borne Diseases. This Journal was earlier published as the Indian Journal of Malariology, a peer reviewed and open access biomedical journal in the field of vector borne diseases. The Journal publishes review articles, original research articles, short research communications, case reports of prime importance, letters to the editor in the field of vector borne diseases and their control.