Leonardo Di Gaetano, Federico Battiston, Michele Starnini
{"title":"Percolation and Topological Properties of Temporal Higher-Order Networks","authors":"Leonardo Di Gaetano, Federico Battiston, Michele Starnini","doi":"10.1103/physrevlett.132.037401","DOIUrl":null,"url":null,"abstract":"Many complex systems that exhibit temporal nonpairwise interactions can be represented by means of generative higher-order network models. Here, we propose a hidden variable formalism to analytically characterize a general class of higher-order network models. We apply our framework to a temporal higher-order activity-driven model, providing analytical expressions for the main topological properties of the time-integrated hypergraphs, depending on the integration time and the activity distributions characterizing the model. Furthermore, we provide analytical estimates for the percolation times of general classes of uncorrelated and correlated hypergraphs. Finally, we quantify the extent to which the percolation time of empirical social interactions is underestimated when their higher-order nature is neglected.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"1 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.132.037401","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Many complex systems that exhibit temporal nonpairwise interactions can be represented by means of generative higher-order network models. Here, we propose a hidden variable formalism to analytically characterize a general class of higher-order network models. We apply our framework to a temporal higher-order activity-driven model, providing analytical expressions for the main topological properties of the time-integrated hypergraphs, depending on the integration time and the activity distributions characterizing the model. Furthermore, we provide analytical estimates for the percolation times of general classes of uncorrelated and correlated hypergraphs. Finally, we quantify the extent to which the percolation time of empirical social interactions is underestimated when their higher-order nature is neglected.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks