Xin Wen , Xing Guo , Shuihua Wang , Zhihai Lu , Yudong Zhang
{"title":"Breast cancer diagnosis: A systematic review","authors":"Xin Wen , Xing Guo , Shuihua Wang , Zhihai Lu , Yudong Zhang","doi":"10.1016/j.bbe.2024.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>The second-leading cause of death for women is breast cancer. Consequently, a precise early diagnosis is essential. With the rapid development of artificial intelligence, computer-aided diagnosis can efficiently assist radiologists in diagnosing breast problems. Mammography images, breast thermal images, and breast ultrasound images are the three ways to diagnose breast cancer. The paper will discuss some recent developments in machine learning and deep learning in three different breast cancer diagnosis methods. The three components of conventional machine learning methods are image preprocessing, segmentation, feature extraction, and image classification. Deep learning includes convolutional neural networks, transfer learning, and other methods. Additionally, the benefits and drawbacks of different methods are thoroughly contrasted. Finally, we also provide a summary of the challenges and potential futures for breast cancer diagnosis.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 1","pages":"Pages 119-148"},"PeriodicalIF":5.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0208521624000020/pdfft?md5=91d91592ef5090eeae962ba35d05faee&pid=1-s2.0-S0208521624000020-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521624000020","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The second-leading cause of death for women is breast cancer. Consequently, a precise early diagnosis is essential. With the rapid development of artificial intelligence, computer-aided diagnosis can efficiently assist radiologists in diagnosing breast problems. Mammography images, breast thermal images, and breast ultrasound images are the three ways to diagnose breast cancer. The paper will discuss some recent developments in machine learning and deep learning in three different breast cancer diagnosis methods. The three components of conventional machine learning methods are image preprocessing, segmentation, feature extraction, and image classification. Deep learning includes convolutional neural networks, transfer learning, and other methods. Additionally, the benefits and drawbacks of different methods are thoroughly contrasted. Finally, we also provide a summary of the challenges and potential futures for breast cancer diagnosis.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.