A native phosphoglycolate salvage pathway of the synthetic autotrophic yeast Komagataella phaffii.

microLife Pub Date : 2023-12-11 eCollection Date: 2024-01-01 DOI:10.1093/femsml/uqad046
Michael Baumschabl, Bernd M Mitic, Christina Troyer, Stephan Hann, Özge Ata, Diethard Mattanovich
{"title":"A native phosphoglycolate salvage pathway of the synthetic autotrophic yeast <i>Komagataella phaffii</i>.","authors":"Michael Baumschabl, Bernd M Mitic, Christina Troyer, Stephan Hann, Özge Ata, Diethard Mattanovich","doi":"10.1093/femsml/uqad046","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic autotrophs can serve as chassis strains for bioproduction from CO<sub>2</sub> as a feedstock to take measures against the climate crisis. Integration of the Calvin-Benson-Bassham (CBB) cycle into the methylotrophic yeast <i>Komagataella phaffii</i> (<i>Pichia pastoris</i>) enabled it to use CO<sub>2</sub> as the sole carbon source. The key enzyme in this cycle is ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) catalyzing the carboxylation step. However, this enzyme is error prone to perform an oxygenation reaction leading to the production of toxic 2-phosphoglycolate. Native autotrophs have evolved different recycling pathways for 2-phosphoglycolate. However, for synthetic autotrophs, no information is available for the existence of such pathways. Deletion of <i>CYB2</i> in the autotrophic <i>K. phaffii</i> strain led to the accumulation of glycolate, an intermediate in phosphoglycolate salvage pathways, suggesting that such a pathway is enabled by native <i>K. phaffii</i> enzymes. <sup>13</sup>C tracer analysis with labeled glycolate indicated that the yeast pathway recycling phosphoglycolate is similar to the plant salvage pathway. This orthogonal yeast pathway may serve as a sensor for RuBisCO oxygenation, and as an engineering target to boost autotrophic growth rates in <i>K. phaffii</i>.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10791038/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"microLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsml/uqad046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic autotrophs can serve as chassis strains for bioproduction from CO2 as a feedstock to take measures against the climate crisis. Integration of the Calvin-Benson-Bassham (CBB) cycle into the methylotrophic yeast Komagataella phaffii (Pichia pastoris) enabled it to use CO2 as the sole carbon source. The key enzyme in this cycle is ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) catalyzing the carboxylation step. However, this enzyme is error prone to perform an oxygenation reaction leading to the production of toxic 2-phosphoglycolate. Native autotrophs have evolved different recycling pathways for 2-phosphoglycolate. However, for synthetic autotrophs, no information is available for the existence of such pathways. Deletion of CYB2 in the autotrophic K. phaffii strain led to the accumulation of glycolate, an intermediate in phosphoglycolate salvage pathways, suggesting that such a pathway is enabled by native K. phaffii enzymes. 13C tracer analysis with labeled glycolate indicated that the yeast pathway recycling phosphoglycolate is similar to the plant salvage pathway. This orthogonal yeast pathway may serve as a sensor for RuBisCO oxygenation, and as an engineering target to boost autotrophic growth rates in K. phaffii.

合成自养酵母 Komagataella phaffii 的原生磷酸乙酸盐挽救途径。
合成自养酵母可以作为底盘菌株,利用二氧化碳作为原料进行生物生产,以应对气候危机。将卡尔文-本森-巴萨姆(CBB)循环整合到养甲基酵母 Komagataella phaffii(Pichia pastoris)中,使其能够将二氧化碳作为唯一的碳源。该循环的关键酶是催化羧化步骤的核酮糖-1,5-二磷酸羧化酶/氧化酶(RuBisCO)。然而,这种酶容易发生错误,进行加氧反应,导致产生有毒的 2-磷酸甘油酸。原生自养生物已进化出不同的 2-磷酸甘油酸回收途径。然而,对于合成自养生物来说,目前还没有关于是否存在这种途径的信息。在自养型 K. phaffii 菌株中缺失 CYB2 会导致乙醇酸的积累,而乙醇酸是磷酰乙酸盐回收途径中的一种中间产物,这表明本地 K. phaffii 酶能够启用这种途径。用标记的乙醇酸进行的 13C 示踪分析表明,酵母回收磷酸根的途径与植物的挽救途径相似。这种正交的酵母途径可作为 RuBisCO 氧化的传感器,也可作为提高 K. phaffii 自养生长率的工程目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信