{"title":"Quantitative investigation of gamma radiation in accelerator produced ISO neutron fields.","authors":"H Dombrowski, R Nolte","doi":"10.1088/1361-6498/ad1fdb","DOIUrl":null,"url":null,"abstract":"<p><p>In standard monoenergetic ISO neutron fields, the neutron yield of neutron-producing reactions was measured in combination with the prompt photon yield, including photon energies up to 10 MeV, for the purpose of comparing the two yields. Separating the photons produced by the target (direct photons) from those generated by secondary neutron reactions was achieved using the time-of-flight method. Photon and neutron ambient dose equivalent values were calculated from measured spectral energy distributions. Quasi monoenergetic neutron fields are needed to systematically test the response of measuring instruments to neutron radiation. For this reason, ISO has defined a number of reference neutron radiation fields covering a wide energy range up to 19 MeV. Because neutron detectors may also be affected by photon radiation, the photon fluence in the ISO neutron fields has to be known. This work focuses on quasi monoenergetic accelerator-produced neutron fields in the energy range of 24 keV to 19 MeV.</p>","PeriodicalId":50068,"journal":{"name":"Journal of Radiological Protection","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiological Protection","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1361-6498/ad1fdb","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In standard monoenergetic ISO neutron fields, the neutron yield of neutron-producing reactions was measured in combination with the prompt photon yield, including photon energies up to 10 MeV, for the purpose of comparing the two yields. Separating the photons produced by the target (direct photons) from those generated by secondary neutron reactions was achieved using the time-of-flight method. Photon and neutron ambient dose equivalent values were calculated from measured spectral energy distributions. Quasi monoenergetic neutron fields are needed to systematically test the response of measuring instruments to neutron radiation. For this reason, ISO has defined a number of reference neutron radiation fields covering a wide energy range up to 19 MeV. Because neutron detectors may also be affected by photon radiation, the photon fluence in the ISO neutron fields has to be known. This work focuses on quasi monoenergetic accelerator-produced neutron fields in the energy range of 24 keV to 19 MeV.
期刊介绍:
Journal of Radiological Protection publishes articles on all aspects of radiological protection, including non-ionising as well as ionising radiations. Fields of interest range from research, development and theory to operational matters, education and training. The very wide spectrum of its topics includes: dosimetry, instrument development, specialized measuring techniques, epidemiology, biological effects (in vivo and in vitro) and risk and environmental impact assessments.
The journal encourages publication of data and code as well as results.