{"title":"The Potential and Application of iPSCs in Gene and Cell Therapy for Retinopathies and Optic Neuropathies.","authors":"E V Lapshin, Y G Gershovich, A V Karabelsky","doi":"10.32607/actanaturae.25454","DOIUrl":null,"url":null,"abstract":"<p><p>This review focuses on <i>in vitro</i> modeling of diseases and the development of therapeutic strategies using iPSCs for the two most common types of optical pathologies: hereditary neuropathies and retinopathies. Degeneration of retinal ganglion cells and the subsequent optic nerve atrophy leads to various types of neuropathies. Damage to photoreceptor cells or retinal pigment epithelium cells causes various retinopathies. Human iPSCs can be used as a model for studying the pathological foundations of diseases and for developing therapies to restore visual function. In recent years, significant progress has also been made in creating ganglionic and retinal organoids from iPSCs. Different research groups have published data pertaining to the potential of using iPSCs for the modeling of optic neuropathies such as glaucoma, Leber hereditary optic neuropathy, etc., including in the development of therapeutic approaches using gene editing tools.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790360/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32607/actanaturae.25454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This review focuses on in vitro modeling of diseases and the development of therapeutic strategies using iPSCs for the two most common types of optical pathologies: hereditary neuropathies and retinopathies. Degeneration of retinal ganglion cells and the subsequent optic nerve atrophy leads to various types of neuropathies. Damage to photoreceptor cells or retinal pigment epithelium cells causes various retinopathies. Human iPSCs can be used as a model for studying the pathological foundations of diseases and for developing therapies to restore visual function. In recent years, significant progress has also been made in creating ganglionic and retinal organoids from iPSCs. Different research groups have published data pertaining to the potential of using iPSCs for the modeling of optic neuropathies such as glaucoma, Leber hereditary optic neuropathy, etc., including in the development of therapeutic approaches using gene editing tools.