A N Narovlyansky, M V Filimonova, N G Tsyshkova, A V Pronin, T V Grebennikova, E V Karamov, V F Larichev, G V Kornilayeva, I T Fedyakina, I V Dolzhikova, M V Mezentseva, E I Isaeva, V V Poloskov, L S Koval, V P Marinchenko, V I Surinova, A S Filimonov, A A Shitova, O V Soldatova, A V Sanin, I K Zubashev, A V Ponomarev, V V Veselovsky, V V Kozlov, A V Stepanov, A V Khomich, V S Kozlov, S A Ivanov, P V Shegai, A D Kaprin, F I Ershov, A L Gintsburg
{"title":"In Vitro Antiviral Activity of a New Indol-3-carboxylic Acid Derivative Against SARS-CoV-2.","authors":"A N Narovlyansky, M V Filimonova, N G Tsyshkova, A V Pronin, T V Grebennikova, E V Karamov, V F Larichev, G V Kornilayeva, I T Fedyakina, I V Dolzhikova, M V Mezentseva, E I Isaeva, V V Poloskov, L S Koval, V P Marinchenko, V I Surinova, A S Filimonov, A A Shitova, O V Soldatova, A V Sanin, I K Zubashev, A V Ponomarev, V V Veselovsky, V V Kozlov, A V Stepanov, A V Khomich, V S Kozlov, S A Ivanov, P V Shegai, A D Kaprin, F I Ershov, A L Gintsburg","doi":"10.32607/actanaturae.26623","DOIUrl":null,"url":null,"abstract":"<p><p>The coronavirus disease (COVID-19) pandemic has brought into sharp relief the threat posed by coronaviruses and laid the foundation for a fundamental analysis of this viral family, as well as a search for effective anti-COVID drugs. Work is underway to update existent vaccines against COVID-19, and screening for low-molecular-weight anti-COVID drug candidates for outpatient medicine continues. The opportunities and ways to accelerate the development of antiviral drugs against other pathogens are being discussed in the context of preparing for the next pandemic. In 2012-2015, Tsyshkova et al. synthesized a group of water-soluble low-molecular-weight compounds exhibiting an antiviral activity, whose chemical structure was similar to that of arbidol. Among those, there were a number of water-soluble compounds based on 5-methoxyindole-3-carboxylic acid aminoalkyl esters. Only one member of this rather extensive group of compounds, dihydrochloride of 6-bromo-5-methoxy-1-methyl-2-(1-piperidinomethyl)-3-(2-diethylaminoethoxy) carbonylindole, exhibited a reliable antiviral effect against SARS-CoV-2 <i>in vitro</i>. At a concentration of 52.0 μM, this compound completely inhibited the replication of the SARS-CoV-2 virus with an infectious activity of 106 TCID50/mL. The concentration curves of the analyzed compound indicate the specificity of its action. Interferon-inducing activity, as well as suppression of syncytium formation induced by the spike protein (S-glycoprotein) of SARS-CoV-2 by 89%, were also revealed. In view of its synthetic accessibility - high activity (IC<sub>50</sub> = 1.06 μg/mL) and high selectivity index (SI = 78.6) - this compound appears to meets the requirements for the development of antiviral drugs for COVID-19 prevention and treatment.</p>","PeriodicalId":6989,"journal":{"name":"Acta Naturae","volume":"15 4","pages":"83-91"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790354/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Naturae","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32607/actanaturae.26623","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The coronavirus disease (COVID-19) pandemic has brought into sharp relief the threat posed by coronaviruses and laid the foundation for a fundamental analysis of this viral family, as well as a search for effective anti-COVID drugs. Work is underway to update existent vaccines against COVID-19, and screening for low-molecular-weight anti-COVID drug candidates for outpatient medicine continues. The opportunities and ways to accelerate the development of antiviral drugs against other pathogens are being discussed in the context of preparing for the next pandemic. In 2012-2015, Tsyshkova et al. synthesized a group of water-soluble low-molecular-weight compounds exhibiting an antiviral activity, whose chemical structure was similar to that of arbidol. Among those, there were a number of water-soluble compounds based on 5-methoxyindole-3-carboxylic acid aminoalkyl esters. Only one member of this rather extensive group of compounds, dihydrochloride of 6-bromo-5-methoxy-1-methyl-2-(1-piperidinomethyl)-3-(2-diethylaminoethoxy) carbonylindole, exhibited a reliable antiviral effect against SARS-CoV-2 in vitro. At a concentration of 52.0 μM, this compound completely inhibited the replication of the SARS-CoV-2 virus with an infectious activity of 106 TCID50/mL. The concentration curves of the analyzed compound indicate the specificity of its action. Interferon-inducing activity, as well as suppression of syncytium formation induced by the spike protein (S-glycoprotein) of SARS-CoV-2 by 89%, were also revealed. In view of its synthetic accessibility - high activity (IC50 = 1.06 μg/mL) and high selectivity index (SI = 78.6) - this compound appears to meets the requirements for the development of antiviral drugs for COVID-19 prevention and treatment.
期刊介绍:
Acta Naturae is an international journal on life sciences based in Moscow, Russia.
Our goal is to present scientific work and discovery in molecular biology, biochemistry, biomedical disciplines and biotechnology. These fields represent the most important priorities for the research and engineering development both in Russia and worldwide. Acta Naturae is also a periodical for those who are curious in various aspects of biotechnological business, innovations in pharmaceutical areas, intellectual property protection and social consequences of scientific progress. The journal publishes analytical industrial surveys focused on the development of different spheres of modern life science and technology.
Being a radically new and totally unique journal in Russia, Acta Naturae is useful to both representatives of fundamental research and experts in applied sciences.