BODIPY Dye Derivative for Irreversible Fluorescent Labeling of Eukaryotic Cells and Their Simultaneous Cytometric Analysis.

IF 2 4区 生物学 Q4 CELL BIOLOGY
A Yu Frolova, S V Kutyakov, V I Martynov, S M Deyev, A A Pakhomov
{"title":"BODIPY Dye Derivative for Irreversible Fluorescent Labeling of Eukaryotic Cells and Their Simultaneous Cytometric Analysis.","authors":"A Yu Frolova, S V Kutyakov, V I Martynov, S M Deyev, A A Pakhomov","doi":"10.32607/actanaturae.26879","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we synthesized a green fluorescent dye derivative, 1,3,5,7-tetramethyl-BODIPY, with a heptyl substituent at the 8-position. The obtained highly hydrophobic compound was able to rapidly and irreversibly bind to eukaryotic cells. Incubation of cells with the dye over different periods of time or at different concentrations allowed us to control the degree of cell labeling and the level of fluorescence. This made it possible to modulate the fluorescence level of different eukaryotic cell cultures and then distinguish them by their level of fluorescence signal in the green channel in cytometric experiments. The labeled cells can be combined and further analyzed in the same test tube under identical conditions using the channels in which the dye does not fluoresce. This approach has been tested on a number of tumor cell cultures containing the HER2 receptor on their surface. The representation of the receptor in these cells was analyzed in one test tube in one run using a HER2-specific ligand based on the hybrid protein DARPin9_29-mCherry, which fluoresces in the red region of the spectrum.</p>","PeriodicalId":6989,"journal":{"name":"Acta Naturae","volume":"15 4","pages":"92-99"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790353/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Naturae","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32607/actanaturae.26879","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we synthesized a green fluorescent dye derivative, 1,3,5,7-tetramethyl-BODIPY, with a heptyl substituent at the 8-position. The obtained highly hydrophobic compound was able to rapidly and irreversibly bind to eukaryotic cells. Incubation of cells with the dye over different periods of time or at different concentrations allowed us to control the degree of cell labeling and the level of fluorescence. This made it possible to modulate the fluorescence level of different eukaryotic cell cultures and then distinguish them by their level of fluorescence signal in the green channel in cytometric experiments. The labeled cells can be combined and further analyzed in the same test tube under identical conditions using the channels in which the dye does not fluoresce. This approach has been tested on a number of tumor cell cultures containing the HER2 receptor on their surface. The representation of the receptor in these cells was analyzed in one test tube in one run using a HER2-specific ligand based on the hybrid protein DARPin9_29-mCherry, which fluoresces in the red region of the spectrum.

用于真核细胞不可逆荧光标记及其同步细胞计量分析的 BODIPY 染料衍生物。
在这项工作中,我们合成了一种绿色荧光染料衍生物 1,3,5,7-四甲基-BODIPY,其 8 位上有一个庚基取代基。获得的高疏水性化合物能够快速、不可逆地与真核细胞结合。在不同时间段或不同浓度下将细胞与染料进行培养,可以控制细胞标记程度和荧光水平。这样就可以调节不同真核细胞培养物的荧光水平,然后在细胞计量学实验中根据它们在绿色通道中的荧光信号水平加以区分。在相同条件下,可以在同一试管中使用染料不发出荧光的通道对标记细胞进行组合和进一步分析。这种方法已在一些表面含有 HER2 受体的肿瘤细胞培养物上进行了测试。使用基于杂交蛋白 DARPin9_29-mCherry 的 HER2 特异性配体(在光谱的红色区域发出荧光),在一次运行中对这些细胞中受体的表现进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Naturae
Acta Naturae 农林科学-林学
CiteScore
3.50
自引率
5.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Acta Naturae is an international journal on life sciences based in Moscow, Russia. Our goal is to present scientific work and discovery in molecular biology, biochemistry, biomedical disciplines and biotechnology. These fields represent the most important priorities for the research and engineering development both in Russia and worldwide. Acta Naturae is also a periodical for those who are curious in various aspects of biotechnological business, innovations in pharmaceutical areas, intellectual property protection and social consequences of scientific progress. The journal publishes analytical industrial surveys focused on the development of different spheres of modern life science and technology. Being a radically new and totally unique journal in Russia, Acta Naturae is useful to both representatives of fundamental research and experts in applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信