Identification of Novel Marine Bioactive Compound as Potential Multiple Inhibitors in Triple-negative Breast Cancer - An in silico Approach.

Hema Priya Manivannan, Vishnu Priya Veeraraghavan, Arul Prakash Francis
{"title":"Identification of Novel Marine Bioactive Compound as Potential Multiple Inhibitors in Triple-negative Breast Cancer - An in silico Approach.","authors":"Hema Priya Manivannan, Vishnu Priya Veeraraghavan, Arul Prakash Francis","doi":"10.2174/0115734099287118240102112337","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer lacking specific receptors, with dysregulated and overactivated Hedgehog (Hh) and mTOR/PI3K/AKT signaling pathways as potential therapeutic targets.</p><p><strong>Objective: </strong>This study aimed to identify potential inhibitors among 53 alkaloids derived from 9 marine bryozoans using in silico approaches. It sought to analyze their impact on key signaling targets and their potential for future experimental validation.</p><p><strong>Methods: </strong>In this research, selected targets were evaluated for protein-protein interactions, coexpression survival, and expression profiles. The protein expression was validated through the Human Protein Atlas (HPA) database and druggability through DGIdb. Online web servers were employed to assess drug-likeness, physiochemical properties, pharmacokinetics, and toxicological characteristics of the compounds. Molecular docking and dynamic simulations were carried out for ligand-protein interactions. Common Pharmacophore features, bioavailability, bioactivity, and biological activity spectrum (BAS) were also analyzed.</p><p><strong>Results: </strong>Out of the 13 compounds studied, 10 displayed strong binding affinity with binding energies ranging from >-6.5 to <-8 Kcal/mol across all targets. Molecular dynamics simulations provided insights into Amathamide E's stability and conformational changes. Pharmacophore modeling revealed common features in 14 compounds potentially responsible for their biological activity.</p><p><strong>Conclusion: </strong>Our findings indicate the potential of marine-derived compounds as TNBC inhibitors. Further in vitro and in vivo validation is necessary to establish their effectiveness and explore their role as novel anti-TNBC agents.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115734099287118240102112337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer lacking specific receptors, with dysregulated and overactivated Hedgehog (Hh) and mTOR/PI3K/AKT signaling pathways as potential therapeutic targets.

Objective: This study aimed to identify potential inhibitors among 53 alkaloids derived from 9 marine bryozoans using in silico approaches. It sought to analyze their impact on key signaling targets and their potential for future experimental validation.

Methods: In this research, selected targets were evaluated for protein-protein interactions, coexpression survival, and expression profiles. The protein expression was validated through the Human Protein Atlas (HPA) database and druggability through DGIdb. Online web servers were employed to assess drug-likeness, physiochemical properties, pharmacokinetics, and toxicological characteristics of the compounds. Molecular docking and dynamic simulations were carried out for ligand-protein interactions. Common Pharmacophore features, bioavailability, bioactivity, and biological activity spectrum (BAS) were also analyzed.

Results: Out of the 13 compounds studied, 10 displayed strong binding affinity with binding energies ranging from >-6.5 to <-8 Kcal/mol across all targets. Molecular dynamics simulations provided insights into Amathamide E's stability and conformational changes. Pharmacophore modeling revealed common features in 14 compounds potentially responsible for their biological activity.

Conclusion: Our findings indicate the potential of marine-derived compounds as TNBC inhibitors. Further in vitro and in vivo validation is necessary to establish their effectiveness and explore their role as novel anti-TNBC agents.

鉴定作为三阴性乳腺癌潜在多重抑制剂的新型海洋生物活性化合物--一种硅学方法。
背景:三阴性乳腺癌(TNBC)是一种缺乏特异性受体的高侵袭性乳腺癌,其潜在的治疗靶点是失调和过度激活的刺猬(Hh)和mTOR/PI3K/AKT信号通路:本研究旨在利用硅学方法从 9 种海洋双壳类动物中提取的 53 种生物碱中找出潜在的抑制剂。研究旨在分析它们对关键信号传导靶点的影响及其未来实验验证的潜力:在这项研究中,对选定的靶标进行了蛋白质-蛋白质相互作用、共表达存活率和表达谱评估。蛋白质表达通过人类蛋白质图谱(HPA)数据库进行验证,可药用性通过 DGIdb 进行验证。在线网络服务器用于评估化合物的药物相似性、理化性质、药代动力学和毒理学特征。对配体与蛋白质的相互作用进行了分子对接和动态模拟。此外,还分析了常见的药理特征、生物利用度、生物活性和生物活性谱(BAS):结果:在研究的 13 种化合物中,有 10 种显示出很强的结合亲和力,结合能从大于 6.5 到结论不等:我们的研究结果表明,海洋衍生化合物具有作为 TNBC 抑制剂的潜力。有必要进一步进行体外和体内验证,以确定它们的有效性,并探索它们作为新型抗 TNBC 药物的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信