{"title":"Regulation of Mycobacterium biofilm development and novel measures against antibiotics resistance.","authors":"Abulimiti Abudukadier, Qi-Ao Zhang, Pei-Bo Li, Jian-Ping Xie","doi":"10.16288/j.yczz.23-205","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, there are over 170 recognized species of Mycobacterium, the only genus in the family Mycobacteriaceae. Organisms belonging to this genus are quite diverse with respect to their ability to cause disease in humans. The Mycobacterium genus includes human pathogens (Mycobacterium tuberculosis complex and Mycobacterium leprae) and environmental microorganisms known as non-tuberculosis mycobacteria (NTM). A common pathogenic factor of Mycobacterium is the formation of biofilms. Bacterial biofilms are usually defined as bacterial communities attached to the surface, and are also considered as shared spaces of encapsulated microbial cells, including various extracellular polymeric substrates (EPS), such as polysaccharides, proteins, amyloid proteins, lipids, and extracellular DNA (EDNA), as well as membrane vesicles and humic like microorganisms derived refractory substances. The assembly and dynamics of the matrix are mainly coordinated by second messengers, signaling molecules, or small RNAs. Fully deciphering how bacteria provide structure for the matrix, thereby promoting extracellular reactions and benefiting from them, remains a challenge for future biofilm research. This review introduces a five step development model for biofilms and a new model for biofilm formation, analyses the pathogenicity of biofilms, their interactions with bacteriophages and host immune cells, and the key genes and regulatory networks of mycobacterial biofilms, as well as mycobacterial biofilms and drug resistance, in order to provide a basis for clinical treatment of diseases caused by biofilms.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"46 1","pages":"34-45"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.23-205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, there are over 170 recognized species of Mycobacterium, the only genus in the family Mycobacteriaceae. Organisms belonging to this genus are quite diverse with respect to their ability to cause disease in humans. The Mycobacterium genus includes human pathogens (Mycobacterium tuberculosis complex and Mycobacterium leprae) and environmental microorganisms known as non-tuberculosis mycobacteria (NTM). A common pathogenic factor of Mycobacterium is the formation of biofilms. Bacterial biofilms are usually defined as bacterial communities attached to the surface, and are also considered as shared spaces of encapsulated microbial cells, including various extracellular polymeric substrates (EPS), such as polysaccharides, proteins, amyloid proteins, lipids, and extracellular DNA (EDNA), as well as membrane vesicles and humic like microorganisms derived refractory substances. The assembly and dynamics of the matrix are mainly coordinated by second messengers, signaling molecules, or small RNAs. Fully deciphering how bacteria provide structure for the matrix, thereby promoting extracellular reactions and benefiting from them, remains a challenge for future biofilm research. This review introduces a five step development model for biofilms and a new model for biofilm formation, analyses the pathogenicity of biofilms, their interactions with bacteriophages and host immune cells, and the key genes and regulatory networks of mycobacterial biofilms, as well as mycobacterial biofilms and drug resistance, in order to provide a basis for clinical treatment of diseases caused by biofilms.
期刊介绍:
Hereditas is a national academic journal sponsored by the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences and the Chinese Society of Genetics and published by Science Press. It is a Chinese core journal and a Chinese high-quality scientific journal. The journal mainly publishes innovative research papers in the fields of genetics, genomics, cell biology, developmental biology, biological evolution, genetic engineering and biotechnology; new technologies and new methods; monographs and reviews on hot issues in the discipline; academic debates and discussions; experience in genetics teaching; introductions to famous geneticists at home and abroad; genetic counseling; information on academic conferences at home and abroad, etc. Main columns: review, frontier focus, research report, technology and method, resources and platform, experimental operation guide, genetic resources, genetics teaching, scientific news, etc.