Gianfranco Di Salle, Lorenzo Tumminello, Maria Elena Laino, Sherif Shalaby, Gayane Aghakhanyan, Salvatore Claudio Fanni, Maria Febi, Jorge Eduardo Shortrede, Mario Miccoli, Lorenzo Faggioni, Mirco Cosottini, Emanuele Neri
{"title":"Accuracy of Radiomics in Predicting <i>IDH</i> Mutation Status in Diffuse Gliomas: A Bivariate Meta-Analysis.","authors":"Gianfranco Di Salle, Lorenzo Tumminello, Maria Elena Laino, Sherif Shalaby, Gayane Aghakhanyan, Salvatore Claudio Fanni, Maria Febi, Jorge Eduardo Shortrede, Mario Miccoli, Lorenzo Faggioni, Mirco Cosottini, Emanuele Neri","doi":"10.1148/ryai.220257","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To perform a systematic review and meta-analysis assessing the predictive accuracy of radiomics in the noninvasive determination of isocitrate dehydrogenase <i>(IDH</i>) status in grade 4 and lower-grade diffuse gliomas. Materials and Methods A systematic search was performed in the PubMed, Scopus, Embase, Web of Science, and Cochrane Library databases for relevant articles published between January 1, 2010, and July 7, 2021. Pooled sensitivity and specificity across studies were estimated. Risk of bias was evaluated using Quality Assessment of Diagnostic Accuracy Studies-2, and methods were evaluated using the radiomics quality score (RQS). Additional subgroup analyses were performed according to tumor grade, RQS, and number of sequences used (PROSPERO ID: CRD42021268958). Results Twenty-six studies that included 3280 patients were included for analysis. The pooled sensitivity and specificity of radiomics for the detection of <i>IDH</i> mutation were 79% (95% CI: 76, 83) and 80% (95% CI: 76, 83), respectively. Low RQS scores were found overall for the included works. Subgroup analyses showed lower false-positive rates in very low RQS studies (RQS < 6) (meta-regression, <i>z</i> = -1.9; <i>P</i> = .02) compared with adequate RQS studies. No substantial differences were found in pooled sensitivity and specificity for the pure grade 4 gliomas group compared with the all-grade gliomas group (81% and 86% vs 79% and 79%, respectively) and for studies using single versus multiple sequences (80% and 77% vs 79% and 82%, respectively). Conclusion The pooled data showed that radiomics achieved good accuracy performance in distinguishing <i>IDH</i> mutation status in patients with grade 4 and lower-grade diffuse gliomas. The overall methodologic quality (RQS) was low and introduced potential bias. <b>Keywords:</b> Neuro-Oncology, Radiomics, Integration, Application Domain, Glioblastoma, IDH Mutation, Radiomics Quality Scoring <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 1","pages":"e220257"},"PeriodicalIF":8.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831518/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.220257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose To perform a systematic review and meta-analysis assessing the predictive accuracy of radiomics in the noninvasive determination of isocitrate dehydrogenase (IDH) status in grade 4 and lower-grade diffuse gliomas. Materials and Methods A systematic search was performed in the PubMed, Scopus, Embase, Web of Science, and Cochrane Library databases for relevant articles published between January 1, 2010, and July 7, 2021. Pooled sensitivity and specificity across studies were estimated. Risk of bias was evaluated using Quality Assessment of Diagnostic Accuracy Studies-2, and methods were evaluated using the radiomics quality score (RQS). Additional subgroup analyses were performed according to tumor grade, RQS, and number of sequences used (PROSPERO ID: CRD42021268958). Results Twenty-six studies that included 3280 patients were included for analysis. The pooled sensitivity and specificity of radiomics for the detection of IDH mutation were 79% (95% CI: 76, 83) and 80% (95% CI: 76, 83), respectively. Low RQS scores were found overall for the included works. Subgroup analyses showed lower false-positive rates in very low RQS studies (RQS < 6) (meta-regression, z = -1.9; P = .02) compared with adequate RQS studies. No substantial differences were found in pooled sensitivity and specificity for the pure grade 4 gliomas group compared with the all-grade gliomas group (81% and 86% vs 79% and 79%, respectively) and for studies using single versus multiple sequences (80% and 77% vs 79% and 82%, respectively). Conclusion The pooled data showed that radiomics achieved good accuracy performance in distinguishing IDH mutation status in patients with grade 4 and lower-grade diffuse gliomas. The overall methodologic quality (RQS) was low and introduced potential bias. Keywords: Neuro-Oncology, Radiomics, Integration, Application Domain, Glioblastoma, IDH Mutation, Radiomics Quality Scoring Supplemental material is available for this article. Published under a CC BY 4.0 license.
期刊介绍:
Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.