EffCause: Discover Dynamic Causal Relationships Efficiently from Time-Series

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yicheng Pan, Yifan Zhang, Xinrui Jiang, Meng Ma, Ping Wang
{"title":"EffCause: Discover Dynamic Causal Relationships Efficiently from Time-Series","authors":"Yicheng Pan, Yifan Zhang, Xinrui Jiang, Meng Ma, Ping Wang","doi":"10.1145/3640818","DOIUrl":null,"url":null,"abstract":"<p>Since the proposal of Granger causality, many researchers have followed the idea and developed extensions to the original algorithm. The classic Granger causality test aims to detect the existence of the static causal relationship. Notably, a fundamental assumption underlying most previous studies is the stationarity of causality, which requires the causality between variables to keep stable. However, this study argues that it is easy to break in real-world scenarios. Fortunately, our paper presents an essential observation: if we consider a sufficiently short window when discovering the rapidly changing causalities, they will keep approximately static and thus can be detected using the static way correctly. In light of this, we develop EffCause, bringing dynamics into classic Granger causality. Specifically, to efficiently examine the causalities on different sliding window lengths, we design two optimization schemes in EffCause and demonstrate the advantage of EffCause through extensive experiments on both simulated and real-world datasets. The results validate that EffCause achieves state-of-the-art accuracy in continuous causal discovery tasks while achieving faster computation. Case studies from cloud system failure analysis and traffic flow monitoring show that EffCause effectively helps us understand real-world time-series data and solve practical problems.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"7 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3640818","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Since the proposal of Granger causality, many researchers have followed the idea and developed extensions to the original algorithm. The classic Granger causality test aims to detect the existence of the static causal relationship. Notably, a fundamental assumption underlying most previous studies is the stationarity of causality, which requires the causality between variables to keep stable. However, this study argues that it is easy to break in real-world scenarios. Fortunately, our paper presents an essential observation: if we consider a sufficiently short window when discovering the rapidly changing causalities, they will keep approximately static and thus can be detected using the static way correctly. In light of this, we develop EffCause, bringing dynamics into classic Granger causality. Specifically, to efficiently examine the causalities on different sliding window lengths, we design two optimization schemes in EffCause and demonstrate the advantage of EffCause through extensive experiments on both simulated and real-world datasets. The results validate that EffCause achieves state-of-the-art accuracy in continuous causal discovery tasks while achieving faster computation. Case studies from cloud system failure analysis and traffic flow monitoring show that EffCause effectively helps us understand real-world time-series data and solve practical problems.

EffCause:从时间序列中有效发现动态因果关系
自格兰杰因果关系提出以来,许多研究人员沿用了这一思想,并对原始算法进行了扩展。经典的格兰杰因果检验旨在检测静态因果关系的存在。值得注意的是,以往大多数研究的一个基本假设是因果关系的静态性,即要求变量之间的因果关系保持稳定。然而,本研究认为,在现实世界中,这一假设很容易被打破。幸运的是,我们的论文提出了一个重要观点:如果我们在发现快速变化的因果关系时考虑足够短的窗口,它们就会保持近似静态,从而可以正确地使用静态方式检测。有鉴于此,我们开发了 EffCause,将动态引入经典的格兰杰因果关系。具体来说,为了在不同的滑动窗口长度上有效地检测因果关系,我们在 EffCause 中设计了两种优化方案,并通过在模拟数据集和实际数据集上的大量实验证明了 EffCause 的优势。结果验证了 EffCause 在连续因果发现任务中达到了最先进的准确度,同时实现了更快的计算速度。来自云系统故障分析和流量监控的案例研究表明,EffCause 能有效帮助我们理解真实世界的时间序列数据并解决实际问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Knowledge Discovery from Data
ACM Transactions on Knowledge Discovery from Data COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.70
自引率
5.60%
发文量
172
审稿时长
3 months
期刊介绍: TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信