Action of automorphisms on irreducible characters of finite reductive groups of type 𝖠

Pub Date : 2024-01-15 DOI:10.1515/jgth-2022-0034
Farrokh Shirjian, Ali Iranmanesh, Farideh Shafiei
{"title":"Action of automorphisms on irreducible characters of finite reductive groups of type 𝖠","authors":"Farrokh Shirjian, Ali Iranmanesh, Farideh Shafiei","doi":"10.1515/jgth-2022-0034","DOIUrl":null,"url":null,"abstract":"Let 𝐺 be a finite reductive group such that the derived subgroup of the underlying algebraic group is a product of quasi-simple groups of type 𝖠. In this paper, we give an explicit description of the action of automorphisms of 𝐺 on the set of its irreducible complex characters. This generalizes a recent result of M. Cabanes and B. Späth [Equivariant character correspondences and inductive McKay condition for type 𝖠, <jats:italic>J. Reine Angew. Math.</jats:italic> 728 (2017), 153–194] and provides a useful tool for investigating the local sides of the local-global conjectures as one usually needs to deal with Levi subgroups. As an application we obtain a generalization of the stabilizer condition in the so-called inductive McKay condition [B. Späth, Inductive McKay condition in defining characteristic, <jats:italic>Bull. Lond. Math. Soc.</jats:italic> 44 (2012), 3, 426–438; Theorem 2.12] for irreducible characters of 𝐺. Moreover, a criterion is given to explicitly determine whether an irreducible character is a constituent of a given generalized Gelfand–Graev character of 𝐺.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let 𝐺 be a finite reductive group such that the derived subgroup of the underlying algebraic group is a product of quasi-simple groups of type 𝖠. In this paper, we give an explicit description of the action of automorphisms of 𝐺 on the set of its irreducible complex characters. This generalizes a recent result of M. Cabanes and B. Späth [Equivariant character correspondences and inductive McKay condition for type 𝖠, J. Reine Angew. Math. 728 (2017), 153–194] and provides a useful tool for investigating the local sides of the local-global conjectures as one usually needs to deal with Levi subgroups. As an application we obtain a generalization of the stabilizer condition in the so-called inductive McKay condition [B. Späth, Inductive McKay condition in defining characteristic, Bull. Lond. Math. Soc. 44 (2012), 3, 426–438; Theorem 2.12] for irreducible characters of 𝐺. Moreover, a criterion is given to explicitly determine whether an irreducible character is a constituent of a given generalized Gelfand–Graev character of 𝐺.
分享
查看原文
对𝖠型有限还原群不可还原字符的自动态作用
设𝐺是一个有限还原群,其底层代数群的导出子群是𝖠型准简单群的乘积。在本文中,我们给出了𝐺 的自变量对其不可还原复字符集的作用的明确描述。这概括了 M. Cabanes 和 B. Späth 最近的一个结果 [Equivariant character correspondences and inductive McKay condition for type 𝖠, J. Reine Angew.Math.728 (2017), 153-194] 并为研究局部-全局猜想的局部边提供了有用的工具,因为人们通常需要处理 Levi 子群。作为应用,我们在所谓的归纳麦凯条件中得到了稳定器条件的广义化[B. Späth, Inductive McKay condition]。Späth, Inductive McKay condition in defining characteristic, Bull.Lond.Math.44 (2012), 3, 426-438; Theorem 2.12]。此外,还给出了明确判定一个不可约字符是否为𝐺的给定广义格尔芬-格拉夫字符的一个成分的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信