Lei Huang , Xiongchao Lin , Ke Zhang , Jun Zhang , Caihong Wang , Sijian Qu , Yonggang Wang
{"title":"Extraordinary d–d hybridization in Co(Cu)0.5OxHy microcubes facilitates PhCH2O* –Co(Ⅳ) coupling for benzyl alcohol electrooxidation","authors":"Lei Huang , Xiongchao Lin , Ke Zhang , Jun Zhang , Caihong Wang , Sijian Qu , Yonggang Wang","doi":"10.1016/j.apcatb.2024.123739","DOIUrl":null,"url":null,"abstract":"<div><p>A series of bimetallic hydroxides Co(M)<sub>0.5</sub>O<sub>x</sub>H<sub>y</sub><span> (M = Cu, Ni, Mn, Zn) were fabricated for the benzyl alcohol oxidation reaction (BAOR). The active origin and synergistic effect of bimetallic electrocatalysts were adequately deciphered. The reaction was found be principally initiated from the sequential oxidation of Co</span><sup>2+</sup> (i.e., Co<sup>2+</sup> to Co<sup>3+</sup> to Co<sup>4+</sup>), followed by the spontaneous proton–coupled electron transfer (PCET) process between Co<sup>4+</sup><span> and benzyl alcohol (BA) molecules. Besides, the adsorption free energy of BA molecules on Co(Cu)</span><sub>0.5</sub>O<sub>x</sub>H<sub>y</sub><span> was successfully optimized by Cu doping owing to the extraordinary d–d orbital hybridization between Co and Cu atom. As a result, an extra high conversion rate (95.3%) of BA and selectivity (98.2%) of benzoic acid were achieved under 0.5 V vs. Hg/HgO. These insights are essential for a comprehensive understanding of the BAOR mechanism and the design of Co–based catalysts.</span></p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"346 ","pages":"Article 123739"},"PeriodicalIF":20.2000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092633732400050X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A series of bimetallic hydroxides Co(M)0.5OxHy (M = Cu, Ni, Mn, Zn) were fabricated for the benzyl alcohol oxidation reaction (BAOR). The active origin and synergistic effect of bimetallic electrocatalysts were adequately deciphered. The reaction was found be principally initiated from the sequential oxidation of Co2+ (i.e., Co2+ to Co3+ to Co4+), followed by the spontaneous proton–coupled electron transfer (PCET) process between Co4+ and benzyl alcohol (BA) molecules. Besides, the adsorption free energy of BA molecules on Co(Cu)0.5OxHy was successfully optimized by Cu doping owing to the extraordinary d–d orbital hybridization between Co and Cu atom. As a result, an extra high conversion rate (95.3%) of BA and selectivity (98.2%) of benzoic acid were achieved under 0.5 V vs. Hg/HgO. These insights are essential for a comprehensive understanding of the BAOR mechanism and the design of Co–based catalysts.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.