Sublinearly Morse boundary of CAT(0) admissible groups

Pub Date : 2024-01-15 DOI:10.1515/jgth-2023-0145
Hoang Thanh Nguyen, Yulan Qing
{"title":"Sublinearly Morse boundary of CAT(0) admissible groups","authors":"Hoang Thanh Nguyen, Yulan Qing","doi":"10.1515/jgth-2023-0145","DOIUrl":null,"url":null,"abstract":"We show that if 𝐺 is an admissible group acting geometrically on a <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>CAT</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0145_ineq_0001.png\" /> <jats:tex-math>\\operatorname{CAT}(0)</jats:tex-math> </jats:alternatives> </jats:inline-formula> space 𝑋, then 𝐺 is a hierarchically hyperbolic space and its 𝜅-Morse boundary <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mo lspace=\"0em\" rspace=\"0em\">∂</m:mo> <m:mi>κ</m:mi> </m:msub> <m:mi>G</m:mi> </m:mrow> <m:mo>,</m:mo> <m:mi>ν</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0145_ineq_0002.png\" /> <jats:tex-math>(\\partial_{\\kappa}G,\\nu)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a model for the Poisson boundary of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo>,</m:mo> <m:mi>μ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0145_ineq_0003.png\" /> <jats:tex-math>(G,\\mu)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where 𝜈 is the hitting measure associated to the random walk driven by 𝜇.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that if 𝐺 is an admissible group acting geometrically on a CAT ( 0 ) \operatorname{CAT}(0) space 𝑋, then 𝐺 is a hierarchically hyperbolic space and its 𝜅-Morse boundary ( κ G , ν ) (\partial_{\kappa}G,\nu) is a model for the Poisson boundary of ( G , μ ) (G,\mu) , where 𝜈 is the hitting measure associated to the random walk driven by 𝜇.
分享
查看原文
CAT(0)可接纳群的次线性莫尔斯边界
我们证明,如果𝐺 是一个几何作用于 CAT ( 0 ) \operatorname{CAT}(0) 空间 𝑋 的可容许群,那么𝐺 是一个层次双曲空间,它的𝜅-Morse 边界 ( ∂ κ G 、ν ) (\partial_{k\appa}G,\nu) 是 ( G , μ ) (G,\mu) 的泊松边界模型,其中 𝜈 是与𝜇驱动的随机漫步相关的命中率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信