{"title":"Three-dimensional structure of an equilibrium drop size distribution within a convective system in Japan","authors":"Takashi Unuma","doi":"10.2151/sola.2024-007","DOIUrl":null,"url":null,"abstract":"</p><p>This study investigated three-dimensional structure of an equilibrium drop size distribution within a convective system that spawned heavy rainfall over northern Kyushu in western Japan on 10 July 2023. Ground-based optical disdrometer observations showed that the drop size distribution shape became bimodal (the peaks are at 0.7 and 1.0 mm in diameter) and then reached an equilibrium state during the rapid increase in precipitation intensity. Analyses of vertical profiles of polarimetric measurements showed that within the convective system collisional coalescence was dominant mainly at 1.5-4 km height, whereas collisional breakup was dominant below 1.5 km height. These processes were inferred to enhance the precipitation intensity. The equilibrium drop size distribution continued at least one minute during the event, and its spatial scale, diagnosed by a radar-derived parameter to be several kilometers, suggested that the equilibrium drop size distribution was a meso-γ-scale phenomenon.</p>\n<p></p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/sola.2024-007","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated three-dimensional structure of an equilibrium drop size distribution within a convective system that spawned heavy rainfall over northern Kyushu in western Japan on 10 July 2023. Ground-based optical disdrometer observations showed that the drop size distribution shape became bimodal (the peaks are at 0.7 and 1.0 mm in diameter) and then reached an equilibrium state during the rapid increase in precipitation intensity. Analyses of vertical profiles of polarimetric measurements showed that within the convective system collisional coalescence was dominant mainly at 1.5-4 km height, whereas collisional breakup was dominant below 1.5 km height. These processes were inferred to enhance the precipitation intensity. The equilibrium drop size distribution continued at least one minute during the event, and its spatial scale, diagnosed by a radar-derived parameter to be several kilometers, suggested that the equilibrium drop size distribution was a meso-γ-scale phenomenon.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.