Ligand Bridged MXene/Metal Organic Frameworks Heterojunction for Efficient Photocatalytic Ammonia Synthesis

IF 20.2 1区 化学 Q1 CHEMISTRY, PHYSICAL
Zhengfeng Shen, Feifei Li, Lijun Guo, Xiaochao Zhang, Yawen Wang, Yunfang Wang, Xuan Jian, Xiaoming Gao, Zhongde Wang, Rui Li, Caimei Fan, Jianxin Liu
{"title":"Ligand Bridged MXene/Metal Organic Frameworks Heterojunction for Efficient Photocatalytic Ammonia Synthesis","authors":"Zhengfeng Shen, Feifei Li, Lijun Guo, Xiaochao Zhang, Yawen Wang, Yunfang Wang, Xuan Jian, Xiaoming Gao, Zhongde Wang, Rui Li, Caimei Fan, Jianxin Liu","doi":"10.1016/j.apcatb.2024.123732","DOIUrl":null,"url":null,"abstract":"<p>Efficient interfacial charge transfer is imperative for enhancing N<sub>2</sub> photofixation, yet controlling this process proves challenging. Herein, a unique ligand pre-coupling strategy was employed to design ligand-bridged MXene/MIL-125(Ti), creating a coordination bond between Ti<sub>3</sub>C<sub>2</sub>O<sub>x</sub> and MIL125(Ti) and forming a ligand-bridge, aiming to regulate interfacial electron transfer. Kelvin probe force microscopy and charge density difference analysis revealed the establishment of an electronic unidirectional transport channel from MIL-125(Ti) to Ti<sub>3</sub>C<sub>2</sub>O<sub>x</sub> through this ligand-bridge. This effectively reduced the interface charge transfer resistance, enhanced the separation efficiency of charge carriers. Consequently, the Ti<sub>3</sub>C<sub>2</sub>O<sub>x</sub>/MIL-125(Ti) manifested an excellent ammonia evolution rate of 103.02 μmol·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>. Furthermore, the efficiency of this strategy for accelerating the separation of photogenerated carriers was demonstrated in five other MOFs, demonstrating its potential for constructing ligand-bridged MXene/MOFs heterojunctions.</p>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"49 1","pages":""},"PeriodicalIF":20.2000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.123732","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient interfacial charge transfer is imperative for enhancing N2 photofixation, yet controlling this process proves challenging. Herein, a unique ligand pre-coupling strategy was employed to design ligand-bridged MXene/MIL-125(Ti), creating a coordination bond between Ti3C2Ox and MIL125(Ti) and forming a ligand-bridge, aiming to regulate interfacial electron transfer. Kelvin probe force microscopy and charge density difference analysis revealed the establishment of an electronic unidirectional transport channel from MIL-125(Ti) to Ti3C2Ox through this ligand-bridge. This effectively reduced the interface charge transfer resistance, enhanced the separation efficiency of charge carriers. Consequently, the Ti3C2Ox/MIL-125(Ti) manifested an excellent ammonia evolution rate of 103.02 μmol·gcat-1·h-1. Furthermore, the efficiency of this strategy for accelerating the separation of photogenerated carriers was demonstrated in five other MOFs, demonstrating its potential for constructing ligand-bridged MXene/MOFs heterojunctions.

Abstract Image

配体桥接 MXene/金属有机框架异质结用于高效光催化氨合成
高效的界面电荷转移对于增强 N2 光固化至关重要,但控制这一过程却极具挑战性。本文采用独特的配体预偶联策略设计了配体桥式 MXene/MIL-125(Ti),在 Ti3C2Ox 和 MIL125(Ti)之间建立配位键并形成配体桥,旨在调节界面电子转移。开尔文探针力显微镜和电荷密度差分析表明,通过这种配位桥,MIL-125(Ti) 与 Ti3C2Ox 之间建立了电子单向传输通道。这有效地降低了界面电荷转移电阻,提高了电荷载流子的分离效率。因此,Ti3C2Ox/MIL-125(Ti) 的氨进化率达到了 103.02 μmol-gcat-1-h-1。此外,这种加速分离光生载流子的策略在其他五种 MOF 中也得到了验证,证明了它在构建配体桥接 MXene/MOF 异质结方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Catalysis B: Environmental
Applied Catalysis B: Environmental 环境科学-工程:化工
CiteScore
38.60
自引率
6.30%
发文量
1117
审稿时长
24 days
期刊介绍: Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including: 1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources. 2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes. 3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts. 4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells. 5.Catalytic reactions that convert wastes into useful products. 6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts. 7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems. 8.New catalytic combustion technologies and catalysts. 9.New catalytic non-enzymatic transformations of biomass components. The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信