{"title":"SARS-CoV-2 variant biology and immune evasion","authors":"Asiya Kamber Zaidi, Rohan Bir Singh","doi":"10.1016/bs.pmbts.2023.11.007","DOIUrl":null,"url":null,"abstract":"<p><span></span>This chapter discusses the SARS-CoV-2 variants and their immune evasion strategies, shedding light on the dynamic nature of the COVID-19 pandemic. The ecological dynamics and viral evolution of SARS-CoV-2 are explored, considering carriers of infection, individual immunity profiles, and human movement as key factors in the emergence and dissemination of variants. The chapter discusses SARS-CoV-2 mutation, including mutation rate, substitution rate, and recombination, influencing genetic diversity and evolution.</p><p>Transmission bottlenecks are highlighted as determinants of dominant variants during viral spread. The evolution phases of the pandemic are outlined, from limited early evolution to the emergence of notable changes like the D614G substitution and variants with heavy mutations. Variants of Concern (VOCs), including Alpha, Beta, Gamma, and the recent Omicron variant, are examined, with insights into inter-lineage and intra-lineage dynamics. The origin of VOCs and the Omicron variant is explored, alongside the role of the furin cleavage site (FCS) in variant emergence. The impact of structural and non-structural proteins on viral infectivity is assessed, as well as innate immunity evasion strategies employed by SARS-CoV-2 variants. The chapter concludes by considering future possibilities, including ongoing virus evolution, the need for surveillance, vaccine development, and public health measures.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular biology and translational science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.pmbts.2023.11.007","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter discusses the SARS-CoV-2 variants and their immune evasion strategies, shedding light on the dynamic nature of the COVID-19 pandemic. The ecological dynamics and viral evolution of SARS-CoV-2 are explored, considering carriers of infection, individual immunity profiles, and human movement as key factors in the emergence and dissemination of variants. The chapter discusses SARS-CoV-2 mutation, including mutation rate, substitution rate, and recombination, influencing genetic diversity and evolution.
Transmission bottlenecks are highlighted as determinants of dominant variants during viral spread. The evolution phases of the pandemic are outlined, from limited early evolution to the emergence of notable changes like the D614G substitution and variants with heavy mutations. Variants of Concern (VOCs), including Alpha, Beta, Gamma, and the recent Omicron variant, are examined, with insights into inter-lineage and intra-lineage dynamics. The origin of VOCs and the Omicron variant is explored, alongside the role of the furin cleavage site (FCS) in variant emergence. The impact of structural and non-structural proteins on viral infectivity is assessed, as well as innate immunity evasion strategies employed by SARS-CoV-2 variants. The chapter concludes by considering future possibilities, including ongoing virus evolution, the need for surveillance, vaccine development, and public health measures.
期刊介绍:
Progress in Molecular Biology and Translational Science (PMBTS) provides in-depth reviews on topics of exceptional scientific importance. If today you read an Article or Letter in Nature or a Research Article or Report in Science reporting findings of exceptional importance, you likely will find comprehensive coverage of that research area in a future PMBTS volume.