{"title":"Study on Fire Resistance of Prefabricated Demountable Composite Beams Using Bolted Shear Connectors","authors":"Mengjie Wang, Guobiao Lou, Zhaohan Wen, Binhui Jiang, Yongchang Wang, Yaqiang Jiang","doi":"10.1007/s10694-023-01533-1","DOIUrl":null,"url":null,"abstract":"<div><p>Using bolts as shear connectors of the steel–concrete composite beams enables prefabricated assembly and makes it possible to demountable and reuse the prefabricated components. However, studies on the fire resistance of prefabricated demountable composite beams (PDCBs) connected by bolts are limited. In this paper, four full-scale fire resistance tests were conducted to investigate the fire resistance of PDCBs connected by shear bolts with profiled sheet ribs parallel to the steel beam. Experimental observations, heating curves, deformation curves, and critical temperatures of specimens were obtained through fire-resistant tests. Test results show that the shear failure of bolted connectors occurred in the partially connected PDCBs instead of in the fully connected ones. Under the same load ratio, the fire resistance limit of PDCBs with fire protection was 4.4 times that of PDCBs without fire protection. The temperatures of the upper flanges of the steel beams in the PDCBs were overestimated by the existing codes. Moreover, numerical heat transfer analysis was carried out to investigate the effect of concrete slab thickness, concrete moisture content and steel beam upper flange dimensions on the temperature distribution of the steel beam upper flange. Finally, based on the results, relevant recommendations are made for the method of calculating the temperature of the steel beam upper flange in the PDCBs.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-023-01533-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Using bolts as shear connectors of the steel–concrete composite beams enables prefabricated assembly and makes it possible to demountable and reuse the prefabricated components. However, studies on the fire resistance of prefabricated demountable composite beams (PDCBs) connected by bolts are limited. In this paper, four full-scale fire resistance tests were conducted to investigate the fire resistance of PDCBs connected by shear bolts with profiled sheet ribs parallel to the steel beam. Experimental observations, heating curves, deformation curves, and critical temperatures of specimens were obtained through fire-resistant tests. Test results show that the shear failure of bolted connectors occurred in the partially connected PDCBs instead of in the fully connected ones. Under the same load ratio, the fire resistance limit of PDCBs with fire protection was 4.4 times that of PDCBs without fire protection. The temperatures of the upper flanges of the steel beams in the PDCBs were overestimated by the existing codes. Moreover, numerical heat transfer analysis was carried out to investigate the effect of concrete slab thickness, concrete moisture content and steel beam upper flange dimensions on the temperature distribution of the steel beam upper flange. Finally, based on the results, relevant recommendations are made for the method of calculating the temperature of the steel beam upper flange in the PDCBs.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.