Gianmarco Caruso, Pierfrancesco Alaimo Di Loro, Marco Mingione, Luca Tardella, Daniela Silvia Pace, Giovanna Jona Lasinio
{"title":"Finite mixtures in capture–recapture surveys for modeling residency patterns in marine wildlife populations","authors":"Gianmarco Caruso, Pierfrancesco Alaimo Di Loro, Marco Mingione, Luca Tardella, Daniela Silvia Pace, Giovanna Jona Lasinio","doi":"10.1002/bimj.202200350","DOIUrl":null,"url":null,"abstract":"<p>This work aims to show how prior knowledge about the structure of a heterogeneous animal population can be leveraged to improve the abundance estimation from capture–recapture survey data. We combine the Open Jolly-Seber model with finite mixtures and propose a parsimonious specification tailored to the residency patterns of the common bottlenose dolphin. We employ a Bayesian framework for our inference, discussing the appropriate choice of priors to mitigate label-switching and nonidentifiability issues, commonly associated with finite mixture models. We conduct a series of simulation experiments to illustrate the competitive advantage of our proposal over less specific alternatives. The proposed approach is applied to data collected on the common bottlenose dolphin population inhabiting the Tiber River estuary (Mediterranean Sea). Our results provide novel insights into this population's size and structure, shedding light on some of the ecological processes governing its dynamics.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202200350","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202200350","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work aims to show how prior knowledge about the structure of a heterogeneous animal population can be leveraged to improve the abundance estimation from capture–recapture survey data. We combine the Open Jolly-Seber model with finite mixtures and propose a parsimonious specification tailored to the residency patterns of the common bottlenose dolphin. We employ a Bayesian framework for our inference, discussing the appropriate choice of priors to mitigate label-switching and nonidentifiability issues, commonly associated with finite mixture models. We conduct a series of simulation experiments to illustrate the competitive advantage of our proposal over less specific alternatives. The proposed approach is applied to data collected on the common bottlenose dolphin population inhabiting the Tiber River estuary (Mediterranean Sea). Our results provide novel insights into this population's size and structure, shedding light on some of the ecological processes governing its dynamics.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.