{"title":"Preconditioning with immunogenic cell death-inducing treatments for subsequent immunotherapy.","authors":"Hui Pan, Peng Liu, Guido Kroemer, Oliver Kepp","doi":"10.1016/bs.ircmb.2023.06.001","DOIUrl":null,"url":null,"abstract":"<p><p>Since the dawn of anticancer immunotherapy, the clinical use of immune checkpoint inhibitors (ICI) has increased exponentially. Monoclonal antibodies targeting CTLA-4 and the PD-1/PD-L1 interaction were first introduced for the treatment of patients with unresectable melanoma. In melanoma, ICI lead to durable regression in a significant number of patients and have thus been clinically approved as a first-line treatment of advanced disease. Over the past years an increasing number of regulatory approvals have been granted for the use of ICI in patients affected by a large range of distinct carcinomas. In retrospect surprisingly, it has been discovered that particularly successful chemotherapeutic treatments are able to trigger anticancer immune responses because they induce immunogenic cell death (ICD), hence killing cancer cells in a way that they elicit an immune response against tumor-associated antigens. Logically, preclinical studies as well as clinical trials are currently exploring the possibility to combine ICD inducers with ICI to obtain optimal therapeutic effects. Here, we provide a broad overview of current strategies for the implementation of combinatorial approaches involving ICD induction followed by ICI in anticancer therapy.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":"382 ","pages":"279-294"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International review of cell and molecular biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ircmb.2023.06.001","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Since the dawn of anticancer immunotherapy, the clinical use of immune checkpoint inhibitors (ICI) has increased exponentially. Monoclonal antibodies targeting CTLA-4 and the PD-1/PD-L1 interaction were first introduced for the treatment of patients with unresectable melanoma. In melanoma, ICI lead to durable regression in a significant number of patients and have thus been clinically approved as a first-line treatment of advanced disease. Over the past years an increasing number of regulatory approvals have been granted for the use of ICI in patients affected by a large range of distinct carcinomas. In retrospect surprisingly, it has been discovered that particularly successful chemotherapeutic treatments are able to trigger anticancer immune responses because they induce immunogenic cell death (ICD), hence killing cancer cells in a way that they elicit an immune response against tumor-associated antigens. Logically, preclinical studies as well as clinical trials are currently exploring the possibility to combine ICD inducers with ICI to obtain optimal therapeutic effects. Here, we provide a broad overview of current strategies for the implementation of combinatorial approaches involving ICD induction followed by ICI in anticancer therapy.
期刊介绍:
International Review of Cell and Molecular Biology presents current advances and comprehensive reviews in cell biology-both plant and animal. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research.