{"title":"Immune checkpoints targeting dendritic cells for antibody-based modulation in cancer.","authors":"Xin Lei, Yizhi Wang, Chayenne Broens, Jannie Borst, Yanling Xiao","doi":"10.1016/bs.ircmb.2023.07.006","DOIUrl":null,"url":null,"abstract":"<p><p>Dendritic cells (DC) are professional antigen-presenting cells which link innate to adaptive immunity. DC play a central role in regulating antitumor T-cell responses in both tumor-draining lymph nodes (TDLN) and the tumor microenvironment (TME). They modulate effector T-cell responses via immune checkpoint proteins (ICPs) that can be either stimulatory or inhibitory. Functions of DC are often impaired by the suppressive TME leading to tumor immune escape. Therefore, better understanding of the mechanisms of action of ICPs expressed by (tumor-infiltrating) DC will lead to potential new treatment strategies. Genetic manipulation and high-dimensional analyses have provided insight in the interactions between DC and T-cells in TDLN and the TME upon ICP targeting. In this review, we discuss (tumor-infiltrating) DC lineage cells and tumor tissue specific \"mature\" DC states and their gene signatures in relation to anti-tumor immunity. We also review a number of ICPs expressed by DC regarding their functions in phagocytosis, DC activation, or inhibition and outline position in, or promise for clinical trials in cancer immunotherapy. Collectively, we highlight the critical role of DC and their exact status in the TME for the induction and propagation of T-cell immunity to cancer.</p>","PeriodicalId":14422,"journal":{"name":"International review of cell and molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International review of cell and molecular biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ircmb.2023.07.006","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Dendritic cells (DC) are professional antigen-presenting cells which link innate to adaptive immunity. DC play a central role in regulating antitumor T-cell responses in both tumor-draining lymph nodes (TDLN) and the tumor microenvironment (TME). They modulate effector T-cell responses via immune checkpoint proteins (ICPs) that can be either stimulatory or inhibitory. Functions of DC are often impaired by the suppressive TME leading to tumor immune escape. Therefore, better understanding of the mechanisms of action of ICPs expressed by (tumor-infiltrating) DC will lead to potential new treatment strategies. Genetic manipulation and high-dimensional analyses have provided insight in the interactions between DC and T-cells in TDLN and the TME upon ICP targeting. In this review, we discuss (tumor-infiltrating) DC lineage cells and tumor tissue specific "mature" DC states and their gene signatures in relation to anti-tumor immunity. We also review a number of ICPs expressed by DC regarding their functions in phagocytosis, DC activation, or inhibition and outline position in, or promise for clinical trials in cancer immunotherapy. Collectively, we highlight the critical role of DC and their exact status in the TME for the induction and propagation of T-cell immunity to cancer.
期刊介绍:
International Review of Cell and Molecular Biology presents current advances and comprehensive reviews in cell biology-both plant and animal. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research.