CO2 to dimethylcarbonate synthesis: surface defects and oxygen vacancies engineering on MOF-derived CexZr1-xO2-y catalysts

IF 20.2 1区 化学 Q1 CHEMISTRY, PHYSICAL
Sergio Rojas-Buzo, Davide Salusso, Andrea Jouve, Edoardo Bracciotti, Matteo Signorile, Silvia Bordiga
{"title":"CO2 to dimethylcarbonate synthesis: surface defects and oxygen vacancies engineering on MOF-derived CexZr1-xO2-y catalysts","authors":"Sergio Rojas-Buzo, Davide Salusso, Andrea Jouve, Edoardo Bracciotti, Matteo Signorile, Silvia Bordiga","doi":"10.1016/j.apcatb.2024.123723","DOIUrl":null,"url":null,"abstract":"<p>Direct reaction of carbon dioxide and methanol to produce dimethylcarbonate (DMC) is an interesting process that allows the synthesis of such valuable product in a more environmentally friendly route than the present technology that is expensive, unsafe and use toxic raw materials. Unfortunately, this alternative presents intrinsic limitations as the low yield due to thermodynamic limitation and reaction mechanism remains unclear. Herein, we propose a reproducible synthetic methodology of cerium oxide and Ce/Zr oxide solid solutions by calcination of opportune UiO-66(Ce/Zr) MOFs, employed as sacrificial precursors. The higher defectivity of these nanomaterials, corroborated by IR of adsorbed CO, in comparison with commercially-available ones, as those synthesized by traditional sol-gel methods, plays a pivotal role in the direct synthesis of DMC. Lastly, reaction mechanism was systematically and in-depth investigated by <em>in situ</em> AP-NEXAFS and MCR-ALS/LCF augmented IR spectroscopy, unveiling the role of oxygen vacancies towards CH<sub>3</sub>OH activation.</p>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.123723","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Direct reaction of carbon dioxide and methanol to produce dimethylcarbonate (DMC) is an interesting process that allows the synthesis of such valuable product in a more environmentally friendly route than the present technology that is expensive, unsafe and use toxic raw materials. Unfortunately, this alternative presents intrinsic limitations as the low yield due to thermodynamic limitation and reaction mechanism remains unclear. Herein, we propose a reproducible synthetic methodology of cerium oxide and Ce/Zr oxide solid solutions by calcination of opportune UiO-66(Ce/Zr) MOFs, employed as sacrificial precursors. The higher defectivity of these nanomaterials, corroborated by IR of adsorbed CO, in comparison with commercially-available ones, as those synthesized by traditional sol-gel methods, plays a pivotal role in the direct synthesis of DMC. Lastly, reaction mechanism was systematically and in-depth investigated by in situ AP-NEXAFS and MCR-ALS/LCF augmented IR spectroscopy, unveiling the role of oxygen vacancies towards CH3OH activation.

Abstract Image

二氧化碳到碳酸二甲酯的合成:源自 MOF 的 CexZr1-xO2-y 催化剂上的表面缺陷和氧空位工程
二氧化碳和甲醇直接反应生成碳酸二甲酯(DMC)是一种有趣的工艺,与昂贵、不安全和使用有毒原料的现有技术相比,它能以更环保的方式合成这种有价值的产品。遗憾的是,这种替代方法存在固有的局限性,如热力学限制导致的低产率和反应机理尚不清楚。在此,我们提出了一种通过煅烧适当的 UiO-66(Ce/Zr)MOFs(用作牺牲前体)来合成氧化铈和 Ce/Zr 氧化物固溶体的可重复合成方法。吸附 CO 的红外光谱证实,与传统溶胶-凝胶法合成的市售纳米材料相比,这些纳米材料具有更高的缺陷性,这对直接合成 DMC 起到了关键作用。最后,通过原位 AP-NEXAFS 和 MCR-ALS/LCF 增强红外光谱对反应机理进行了系统而深入的研究,揭示了氧空位对 CH3OH 活化的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Catalysis B: Environmental
Applied Catalysis B: Environmental 环境科学-工程:化工
CiteScore
38.60
自引率
6.30%
发文量
1117
审稿时长
24 days
期刊介绍: Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including: 1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources. 2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes. 3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts. 4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells. 5.Catalytic reactions that convert wastes into useful products. 6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts. 7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems. 8.New catalytic combustion technologies and catalysts. 9.New catalytic non-enzymatic transformations of biomass components. The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信