{"title":"Differences between lower extremity joint running kinetics captured by marker-based and markerless systems were speed dependent.","authors":"Hui Tang, Barry Munkasy, Li Li","doi":"10.1016/j.jshs.2024.01.002","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The development of computer vision technology has enabled the use of markerless movement tracking for biomechanical analysis. Recent research has reported the feasibility of markerless systems in motion analysis but has yet to fully explore their utility for capturing faster movements, such as running. Applied studies using markerless systems in clinical and sports settings are still lacking. Thus, the present study compared running biomechanics estimated by marker-based and markerless systems. Given running speed not only affects sports performance but is also associated with clinical injury prevention, diagnosis, and rehabilitation, we aimed to investigate the effects of speed on the comparison of estimated lower extremity joint moments and powers between markerless and marker-based technologies during treadmill running as a concurrent validating study.</p><p><strong>Methods: </strong>Kinematic data from marker-based/markerless technologies were collected, along with ground reaction force data, from 16 young adults running on an instrumented treadmill at 3 speeds: 2.24 m/s, 2.91 m/s, and 3.58 m/s (5.0 miles/h, 6.5 miles/h, and 8.0 miles/h). Sagittal plane moments and powers of the hip, knee, and ankle were calculated by inverse dynamic methods. Time series analysis and statistical parametric mapping were used to determine system differences.</p><p><strong>Results: </strong>Compared to the marker-based system, the markerless system estimated increased lower extremity joint kinetics with faster speed during the swing phase in most cases.</p><p><strong>Conclusion: </strong>Despite the promising application of markerless technology in clinical settings, systematic markerless overestimation requires focused attention. Based on segment pose estimations, the centers of mass estimated by markerless technologies were farther away from the relevant distal joint centers, which led to greater joint moments and powers estimates by markerless vs. marker-based systems. The differences were amplified by running speed.</p>","PeriodicalId":48897,"journal":{"name":"Journal of Sport and Health Science","volume":" ","pages":"569-578"},"PeriodicalIF":9.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11184322/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sport and Health Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jshs.2024.01.002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The development of computer vision technology has enabled the use of markerless movement tracking for biomechanical analysis. Recent research has reported the feasibility of markerless systems in motion analysis but has yet to fully explore their utility for capturing faster movements, such as running. Applied studies using markerless systems in clinical and sports settings are still lacking. Thus, the present study compared running biomechanics estimated by marker-based and markerless systems. Given running speed not only affects sports performance but is also associated with clinical injury prevention, diagnosis, and rehabilitation, we aimed to investigate the effects of speed on the comparison of estimated lower extremity joint moments and powers between markerless and marker-based technologies during treadmill running as a concurrent validating study.
Methods: Kinematic data from marker-based/markerless technologies were collected, along with ground reaction force data, from 16 young adults running on an instrumented treadmill at 3 speeds: 2.24 m/s, 2.91 m/s, and 3.58 m/s (5.0 miles/h, 6.5 miles/h, and 8.0 miles/h). Sagittal plane moments and powers of the hip, knee, and ankle were calculated by inverse dynamic methods. Time series analysis and statistical parametric mapping were used to determine system differences.
Results: Compared to the marker-based system, the markerless system estimated increased lower extremity joint kinetics with faster speed during the swing phase in most cases.
Conclusion: Despite the promising application of markerless technology in clinical settings, systematic markerless overestimation requires focused attention. Based on segment pose estimations, the centers of mass estimated by markerless technologies were farther away from the relevant distal joint centers, which led to greater joint moments and powers estimates by markerless vs. marker-based systems. The differences were amplified by running speed.
期刊介绍:
The Journal of Sport and Health Science (JSHS) is an international, multidisciplinary journal that aims to advance the fields of sport, exercise, physical activity, and health sciences. Published by Elsevier B.V. on behalf of Shanghai University of Sport, JSHS is dedicated to promoting original and impactful research, as well as topical reviews, editorials, opinions, and commentary papers.
With a focus on physical and mental health, injury and disease prevention, traditional Chinese exercise, and human performance, JSHS offers a platform for scholars and researchers to share their findings and contribute to the advancement of these fields. Our journal is peer-reviewed, ensuring that all published works meet the highest academic standards.
Supported by a carefully selected international editorial board, JSHS upholds impeccable integrity and provides an efficient publication platform. We invite submissions from scholars and researchers worldwide, and we are committed to disseminating insightful and influential research in the field of sport and health science.