Recent advances in implantable biomaterials for the treatment of volumetric muscle loss.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Leia Schiltz, Elizabeth Grivetti, Gabrielle I Tanner, Taimoor H Qazi
{"title":"Recent advances in implantable biomaterials for the treatment of volumetric muscle loss.","authors":"Leia Schiltz, Elizabeth Grivetti, Gabrielle I Tanner, Taimoor H Qazi","doi":"10.1159/000536262","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Volumetric muscle loss (VML) causes pain and disability in patients who sustain traumatic injury from invasive surgical procedures, vehicle accidents, and battlefield wounds. Clinical treatment of VML injuries is challenging and although options such as free-flap autologous grafting exist, patients inevitably develop excessive scarring and fatty infiltration, leading to muscle weakness and reduced quality of life.</p><p><strong>Summary: </strong>New bioengineering approaches, including cell therapy, drug delivery, and biomaterial implantation, have emerged as therapies to restore muscle function and structure to pre-injury levels. Of these, acellular biomaterial implants have attracted wide interest owing to their broad potential design space and high translational potential as medical devices. Implantable biomaterials fill the VML defect and create a conduit that permits the migration of regenerative cells from intact muscle tissue to the injury site. Invading cells and regenerating myofibers are sensitive to the biomaterial's structural and biochemical properties, which can play instructive roles in guiding cell fate and organization into functional tissue.</p><p><strong>Key messages: </strong>Many diverse biomaterials have been developed for skeletal muscle regeneration with variations in biophysical and biochemical properties and while many have been tested in vitro, few have proven their regenerative potential in clinically relevant in vivo models. Here, we provide an overview of recent advances in the design, fabrication, and application of acellular biomaterials made from synthetic or natural materials for the repair of VML defects. We specifically focus on biomaterials with rationally designed structural (i.e., porosity, topography, alignment) and biochemical (i.e., proteins, peptides, growth factors) components, highlighting their regenerative effects in clinically relevant VML models.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000536262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Volumetric muscle loss (VML) causes pain and disability in patients who sustain traumatic injury from invasive surgical procedures, vehicle accidents, and battlefield wounds. Clinical treatment of VML injuries is challenging and although options such as free-flap autologous grafting exist, patients inevitably develop excessive scarring and fatty infiltration, leading to muscle weakness and reduced quality of life.

Summary: New bioengineering approaches, including cell therapy, drug delivery, and biomaterial implantation, have emerged as therapies to restore muscle function and structure to pre-injury levels. Of these, acellular biomaterial implants have attracted wide interest owing to their broad potential design space and high translational potential as medical devices. Implantable biomaterials fill the VML defect and create a conduit that permits the migration of regenerative cells from intact muscle tissue to the injury site. Invading cells and regenerating myofibers are sensitive to the biomaterial's structural and biochemical properties, which can play instructive roles in guiding cell fate and organization into functional tissue.

Key messages: Many diverse biomaterials have been developed for skeletal muscle regeneration with variations in biophysical and biochemical properties and while many have been tested in vitro, few have proven their regenerative potential in clinically relevant in vivo models. Here, we provide an overview of recent advances in the design, fabrication, and application of acellular biomaterials made from synthetic or natural materials for the repair of VML defects. We specifically focus on biomaterials with rationally designed structural (i.e., porosity, topography, alignment) and biochemical (i.e., proteins, peptides, growth factors) components, highlighting their regenerative effects in clinically relevant VML models.

用于治疗体积性肌肉缺失的植入式生物材料的最新进展。
背景:体积性肌肉缺失(VML)会给因侵入性外科手术、车祸和战场创伤而遭受外伤的患者带来疼痛和残疾。摘要:新的生物工程方法,包括细胞疗法、药物输送和生物材料植入,已成为将肌肉功能和结构恢复到受伤前水平的疗法。其中,无细胞生物材料植入物因其广阔的潜在设计空间和作为医疗设备的巨大转化潜力而受到广泛关注。可植入的生物材料可填充 VML 缺口,并形成一个通道,允许再生细胞从完整的肌肉组织迁移到损伤部位。入侵细胞和再生肌纤维对生物材料的结构和生化特性非常敏感,这些特性可在引导细胞命运和组织成为功能性组织方面发挥指导作用:目前已开发出多种用于骨骼肌再生的生物材料,其生物物理和生物化学特性各不相同,虽然许多材料已通过体外测试,但很少有材料能在临床相关的体内模型中证明其再生潜力。在此,我们将概述合成或天然材料制成的无细胞生物材料在设计、制造和应用方面的最新进展,以修复 VML 缺陷。我们特别关注具有合理设计的结构(即孔隙率、形貌、排列)和生化(即蛋白质、肽、生长因子)成分的生物材料,重点介绍它们在临床相关 VML 模型中的再生效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信