Glymphatic system and aquaporin‑4 in epilepsy.

IF 1.4 4区 医学 Q4 NEUROSCIENCES
Dorota Nowicka
{"title":"Glymphatic system and aquaporin‑4 in epilepsy.","authors":"Dorota Nowicka","doi":"10.55782/ane-2023-2498","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decade glymphatic concept has gained more and more interest. Despite some lacking data regarding structural and functional aspects, glymphatic system is widely considered the main mechanism of water and solutes transport in brain parenchyma, as well as waste clearance from the brain. Glymphatic system modulates the extracellular space volume and is involved in spatial K+ buffering (via influencing Kir4.1 channel functioning), two factors crucial for neuronal excitability and seizure susceptibility, and is itself strongly stimulated during sleep. This review summarizes information regarding the potential role of the glymphatic system in the development and progression of epilepsy, especially the role of the glial water channel aquaporin‑4 in modulation of brain excitability and in epilepsy. Data from animal models and human studies are presented.</p>","PeriodicalId":7032,"journal":{"name":"Acta neurobiologiae experimentalis","volume":"83 4","pages":"447-458"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta neurobiologiae experimentalis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.55782/ane-2023-2498","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past decade glymphatic concept has gained more and more interest. Despite some lacking data regarding structural and functional aspects, glymphatic system is widely considered the main mechanism of water and solutes transport in brain parenchyma, as well as waste clearance from the brain. Glymphatic system modulates the extracellular space volume and is involved in spatial K+ buffering (via influencing Kir4.1 channel functioning), two factors crucial for neuronal excitability and seizure susceptibility, and is itself strongly stimulated during sleep. This review summarizes information regarding the potential role of the glymphatic system in the development and progression of epilepsy, especially the role of the glial water channel aquaporin‑4 in modulation of brain excitability and in epilepsy. Data from animal models and human studies are presented.

癫痫中的淋巴系统和水传导蛋白-4。
在过去十年中,脑 glymphatic 概念受到越来越多的关注。尽管缺乏一些有关结构和功能方面的数据,但人们普遍认为,脑回声系统是脑实质内水分和溶质运输以及脑内废物清除的主要机制。脑回声系统调节细胞外空间容量并参与空间 K+ 缓冲(通过影响 Kir4.1 通道功能),这两个因素对神经元兴奋性和癫痫易感性至关重要,而且其本身在睡眠期间受到强烈刺激。本综述总结了有关甘油系统在癫痫发生和发展过程中的潜在作用的信息,特别是胶质水通道aquaporin-4在调节大脑兴奋性和癫痫中的作用。本文介绍了来自动物模型和人体研究的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
7.10%
发文量
40
审稿时长
>12 weeks
期刊介绍: Acta Neurobiologiae Experimentalis (ISSN: 0065-1400 (print), eISSN: 1689-0035) covers all aspects of neuroscience, from molecular and cellular neurobiology of the nervous system, through cellular and systems electrophysiology, brain imaging, functional and comparative neuroanatomy, development and evolution of the nervous system, behavior and neuropsychology to brain aging and pathology, including neuroinformatics and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信