Advancing the Understanding of Surface Science through Nonlinear Optics and Electrochemistry

IF 2.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Adi Salomon, Malachi Noked, Menny Shalom
{"title":"Advancing the Understanding of Surface Science through Nonlinear Optics and Electrochemistry","authors":"Adi Salomon, Malachi Noked, Menny Shalom","doi":"10.1002/ijch.202400002","DOIUrl":null,"url":null,"abstract":"<p>Surface characterization is essential for understanding chemical and electrochemical transformations occurring on surfaces or at interfaces. Battery electrode aging processes, biofilm growth, crystallization, and transport/signaling across cellular membranes are only a few examples of such phenomena. This special issue delves into applied electrochemistry and nonlinear optical techniques applicable to surface characterization.</p>\n<p>Near-field techniques usually require specialized instrumentation. However, although much improvement has been made over recent years, many surface-characterization tools are still limited to samples in a vacuum; therefore, in-situ and in-operando experiments are impractical. On the other hand, optical techniques are more flexible and less demanding regarding sample handling. Still, they usually need more surface specificity and sensitivity, and in principle, they have a lower resolution compared to electron beam-based techniques.</p>\n<p>On the other hand, optical techniques also offer different contrast modalities. For example, Second-harmonic generation (SHG) or surface-enhanced Raman spectroscopy (SERS) are versatile optical tools for probing surfaces. From symmetry considerations, SHG responses are forbidden from the bulk of metallic electrodes and observed only from the surface where the symmetry is broken. Thus, high sensitivity can be attained using SHG, and when both SHG and SERS are combined, selectivity and sensitivity can be achieved. In addition, nanofabrication of metallic surfaces can further improve the sensitivity of SHG and SERS by orders of magnitude due to local field enhancement.</p>\n<p>In recent years, much improvement has been made in super-resolution microscopy and imaging, enabling fast yet high-resolution imaging over areas as large as half-by-half-millimeter squares. For the field of electrochemistry, such development is very important since it may open the door for real-time optical characterization of solid-liquid interfaces during charging/discharging cycles, which can potentially lead to significant improvements in the performance and durability of the electrode. These contributions not only expand the horizons of applied electrochemical science but also underline its influence on our daily lives and its pivotal role in addressing global challenges related to climate and energy.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"175 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/ijch.202400002","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Surface characterization is essential for understanding chemical and electrochemical transformations occurring on surfaces or at interfaces. Battery electrode aging processes, biofilm growth, crystallization, and transport/signaling across cellular membranes are only a few examples of such phenomena. This special issue delves into applied electrochemistry and nonlinear optical techniques applicable to surface characterization.

Near-field techniques usually require specialized instrumentation. However, although much improvement has been made over recent years, many surface-characterization tools are still limited to samples in a vacuum; therefore, in-situ and in-operando experiments are impractical. On the other hand, optical techniques are more flexible and less demanding regarding sample handling. Still, they usually need more surface specificity and sensitivity, and in principle, they have a lower resolution compared to electron beam-based techniques.

On the other hand, optical techniques also offer different contrast modalities. For example, Second-harmonic generation (SHG) or surface-enhanced Raman spectroscopy (SERS) are versatile optical tools for probing surfaces. From symmetry considerations, SHG responses are forbidden from the bulk of metallic electrodes and observed only from the surface where the symmetry is broken. Thus, high sensitivity can be attained using SHG, and when both SHG and SERS are combined, selectivity and sensitivity can be achieved. In addition, nanofabrication of metallic surfaces can further improve the sensitivity of SHG and SERS by orders of magnitude due to local field enhancement.

In recent years, much improvement has been made in super-resolution microscopy and imaging, enabling fast yet high-resolution imaging over areas as large as half-by-half-millimeter squares. For the field of electrochemistry, such development is very important since it may open the door for real-time optical characterization of solid-liquid interfaces during charging/discharging cycles, which can potentially lead to significant improvements in the performance and durability of the electrode. These contributions not only expand the horizons of applied electrochemical science but also underline its influence on our daily lives and its pivotal role in addressing global challenges related to climate and energy.

通过非线性光学和电化学促进对表面科学的理解
表面表征对于了解表面或界面上发生的化学和电化学转变至关重要。电池电极老化过程、生物膜生长、结晶以及跨细胞膜的传输/信号传递只是此类现象的几个例子。本特刊将深入探讨适用于表面表征的应用电化学和非线性光学技术。近场技术通常需要专门的仪器。然而,尽管近年来近场技术有了很大改进,但许多表面表征工具仍局限于真空中的样品;因此,原位和操作中的实验是不切实际的。另一方面,光学技术更加灵活,对样品处理的要求也更低。不过,它们通常需要更高的表面特异性和灵敏度,而且原则上,与基于电子束的技术相比,它们的分辨率较低。例如,二次谐波发生(SHG)或表面增强拉曼光谱(SERS)是探测表面的多功能光学工具。从对称性考虑,SHG 反应被禁止从金属电极的主体产生,只能从对称性被打破的表面观察到。因此,使用 SHG 可以实现高灵敏度,而当 SHG 和 SERS 结合使用时,则可以实现选择性和灵敏度。此外,由于局部场增强,金属表面的纳米加工可进一步提高 SHG 和 SERS 的灵敏度,提高幅度可达数量级。对于电化学领域来说,这样的发展非常重要,因为它可能为充电/放电循环过程中固液界面的实时光学表征打开大门,从而有可能显著改善电极的性能和耐用性。这些贡献不仅拓展了应用电化学科学的视野,还凸显了电化学科学对我们日常生活的影响,以及它在应对与气候和能源有关的全球挑战方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Israel Journal of Chemistry
Israel Journal of Chemistry 化学-化学综合
CiteScore
6.20
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: The fledgling State of Israel began to publish its scientific activity in 1951 under the general heading of Bulletin of the Research Council of Israel, which quickly split into sections to accommodate various fields in the growing academic community. In 1963, the Bulletin ceased publication and independent journals were born, with Section A becoming the new Israel Journal of Chemistry. The Israel Journal of Chemistry is the official journal of the Israel Chemical Society. Effective from Volume 50 (2010) it is published by Wiley-VCH. The Israel Journal of Chemistry is an international and peer-reviewed publication forum for Special Issues on timely research topics in all fields of chemistry: from biochemistry through organic and inorganic chemistry to polymer, physical and theoretical chemistry, including all interdisciplinary topics. Each topical issue is edited by one or several Guest Editors and primarily contains invited Review articles. Communications and Full Papers may be published occasionally, if they fit with the quality standards of the journal. The publication language is English and the journal is published twelve times a year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信