Tailoring the electronic structure of the NaTi2(PO4)3 anode for high-performing sodium-ion batteries via defect engineering†

IF 9.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Green Chemistry Pub Date : 2024-02-19 DOI:10.1039/d3gc04008a
Qinchao Wang , Sha He , Hao Chen , Zhaoquan Peng , Zhixin Xu , Zhiyong Zeng , Chao Wang , Pan Xue , Lubin Ni , Xiaoge Li , Jie Han
{"title":"Tailoring the electronic structure of the NaTi2(PO4)3 anode for high-performing sodium-ion batteries via defect engineering†","authors":"Qinchao Wang ,&nbsp;Sha He ,&nbsp;Hao Chen ,&nbsp;Zhaoquan Peng ,&nbsp;Zhixin Xu ,&nbsp;Zhiyong Zeng ,&nbsp;Chao Wang ,&nbsp;Pan Xue ,&nbsp;Lubin Ni ,&nbsp;Xiaoge Li ,&nbsp;Jie Han","doi":"10.1039/d3gc04008a","DOIUrl":null,"url":null,"abstract":"<div><p>NASICON-type electrode materials suffer from poor intrinsic electronic conductivity, which significantly limits their capacity and rate capability for further application in sodium-ion batteries. Herein, we aim to address this issue by introducing oxygen vacancies (V<sub>O</sub>) into core–shell C@NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>-<em>x</em> composites to tailor the electronic structures and enhance the Na storage performance. Various characterization techniques, including Rietveld refinement of X-ray diffraction (XRD), electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS), confirm the successful generation of V<sub>O</sub> in the core–shell C@NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>-<em>x</em> composites. Density functional theory calculations demonstrate that V<sub>O</sub> induce partial hole states in O 2<em>p</em> orbitals, localizing the electronic structures of P1 3<em>p</em>, Ti1 <em>t</em><sub>2g</sub>, and Ti2 <em>t</em><sub>2g</sub> orbitals. Simultaneously, the electronic structure of O atoms bridging these cations (Ti1, Ti2, and P1) becomes delocalized. This unique electronic modulation facilitates sodiation/desodiation and enhances fast Na<sup>+</sup> diffusion kinetics. Among the C@NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>-<em>x</em> composites, the C@NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>-1.0 anode, which possesses the highest content of V<sub>O</sub>, exhibits the most stable cycling performance (retaining 108.9 mA h g<sup>−1</sup> after 10 000 cycles at 20C) and the best rate capability. The CV and GITT tests confirm about an order of magnitude of <em>D</em><sub>Na</sub><sup>+</sup> increase in C@NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>-1.0 composites. Furthermore, the EPR, scanning electron microscopy and transmission electron microscopy results confirm the robustness of intrinsic V<sub>O</sub> and the stable core–shell structure even after 10 000 cycles at 20C, firmly confirming their ability to enable high electrochemical activity. Overall, the engineering of oxygen vacancies provides a promising approach to address the poor electronic and ionic conductivities of NASICON-type materials for future applications of SIBs.</p></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"26 4","pages":"Pages 2114-2123"},"PeriodicalIF":9.2000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224001389","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

NASICON-type electrode materials suffer from poor intrinsic electronic conductivity, which significantly limits their capacity and rate capability for further application in sodium-ion batteries. Herein, we aim to address this issue by introducing oxygen vacancies (VO) into core–shell C@NaTi2(PO4)3-x composites to tailor the electronic structures and enhance the Na storage performance. Various characterization techniques, including Rietveld refinement of X-ray diffraction (XRD), electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS), confirm the successful generation of VO in the core–shell C@NaTi2(PO4)3-x composites. Density functional theory calculations demonstrate that VO induce partial hole states in O 2p orbitals, localizing the electronic structures of P1 3p, Ti1 t2g, and Ti2 t2g orbitals. Simultaneously, the electronic structure of O atoms bridging these cations (Ti1, Ti2, and P1) becomes delocalized. This unique electronic modulation facilitates sodiation/desodiation and enhances fast Na+ diffusion kinetics. Among the C@NaTi2(PO4)3-x composites, the C@NaTi2(PO4)3-1.0 anode, which possesses the highest content of VO, exhibits the most stable cycling performance (retaining 108.9 mA h g−1 after 10 000 cycles at 20C) and the best rate capability. The CV and GITT tests confirm about an order of magnitude of DNa+ increase in C@NaTi2(PO4)3-1.0 composites. Furthermore, the EPR, scanning electron microscopy and transmission electron microscopy results confirm the robustness of intrinsic VO and the stable core–shell structure even after 10 000 cycles at 20C, firmly confirming their ability to enable high electrochemical activity. Overall, the engineering of oxygen vacancies provides a promising approach to address the poor electronic and ionic conductivities of NASICON-type materials for future applications of SIBs.

Abstract Image

Abstract Image

通过缺陷工程调整 NaTi2(PO4)3 阳极的电子结构,制造高性能钠离子电池
NASICON 型电极材料的固有电子导电性较差,这大大限制了其在钠离子电池中进一步应用的容量和速率能力。为了解决这一问题,我们在核壳 C@NaTi2(PO4)3-x复合材料中引入了氧空位(VO),以调整其电子结构并提高其钠储存性能。各种表征技术,包括 X 射线衍射(XRD)的里特维尔德细化、电子顺磁共振(EPR)和 X 射线光电子能谱(XPS),证实了在核壳 C@NaTi2(PO4)3-x 复合材料中成功生成了 VO。密度泛函理论计算表明,VO 在 O 2p 轨道中诱导出部分空穴态,使 P1 3p、Ti1 t2g 和 Ti2 t2g 轨道的电子结构局部化。与此同时,连接这些阳离子(Ti1、Ti2 和 P1)的 O 原子的电子结构也变得非局部化。这种独特的电子调制促进了钠化/解钠,并增强了 Na+ 的快速扩散动力学。在 C@NaTi2(PO4)3-x 复合材料中,C@NaTi2(PO4)3-1.0 阳极的 VO 含量最高,循环性能最稳定(在 20C 下循环 10 000 次后仍能保持 108.9 mA h g-1),速率能力也最好。CV 和 GITT 测试证实,C@NaTi2(PO4)3-1.0 复合材料中的 DNa+ 增加了约一个数量级。此外,EPR、扫描电子显微镜和透射电子显微镜结果证实,即使在 20C 下经过 10,000 次循环后,本征 VO 和稳定的核壳结构仍很坚固,这充分证明了它们具有实现高电化学活性的能力。总之,氧空位工程为解决 NASICON 型材料电子和离子导电性差的问题提供了一种很有前景的方法,可用于 SIB 的未来应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信