Existence of Global Entropy Solution for Eulerian Droplet Models and Two-phase Flow Model with Non-constant Air Velocity

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Abhrojyoti Sen, Anupam Sen
{"title":"Existence of Global Entropy Solution for Eulerian Droplet Models and Two-phase Flow Model with Non-constant Air Velocity","authors":"Abhrojyoti Sen, Anupam Sen","doi":"10.1007/s10884-023-10337-4","DOIUrl":null,"url":null,"abstract":"<p>This article addresses the question concerning the existence of global entropy solution for generalized Eulerian droplet models with air velocity depending on both space and time variables. When <span>\\(f(u)=u,\\)</span> <span>\\(\\kappa (t)=const.\\)</span> and <span>\\(u_a(x,t)=const.\\)</span> in (1.1), the study of the Riemann problem has been carried out by Keita and Bourgault (J Math Anal Appl 472(1):1001–1027, 2019) and Zhang et al. (Appl Anal 102(2):576–589, 2023). We show the global existence of the entropy solution to (1.1) for any strictly increasing function <span>\\(f(\\cdot )\\)</span> and <span>\\(u_a(x,t)\\)</span> depending only on time with mild regularity assumptions on the initial data via <i>shadow wave tracking</i> approach. This represents a significant improvement over the findings of Yang (J Differ Equ 159(2):447–484, 1999). Next, by using the <i>generalized variational principle,</i> we prove the existence of an explicit entropy solution to (1.1) with <span>\\(f(u)=u,\\)</span> for all time <span>\\(t&gt;0\\)</span> and initial mass <span>\\(v_0&gt;0,\\)</span> where <span>\\(u_a(x,t)\\)</span> depends on both space and time variables, and also has an algebraic decay in the time variable. This improves the results of many authors such as Ha et al. (J Differ Equ 257(5):1333–1371, 2014), Cheng and Yang (Appl Math Lett 135(6):8, 2023) and Ding and Wang (Quart Appl Math 62(3):509–528, 2004) in various ways. Furthermore, by employing the shadow wave tracking procedure, we discuss the existence of global entropy solution to the generalized two-phase flow model with time-dependent air velocity that extends the recent results of Shen and Sun (J Differ Equ 314:1–55, 2022).</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-023-10337-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This article addresses the question concerning the existence of global entropy solution for generalized Eulerian droplet models with air velocity depending on both space and time variables. When \(f(u)=u,\) \(\kappa (t)=const.\) and \(u_a(x,t)=const.\) in (1.1), the study of the Riemann problem has been carried out by Keita and Bourgault (J Math Anal Appl 472(1):1001–1027, 2019) and Zhang et al. (Appl Anal 102(2):576–589, 2023). We show the global existence of the entropy solution to (1.1) for any strictly increasing function \(f(\cdot )\) and \(u_a(x,t)\) depending only on time with mild regularity assumptions on the initial data via shadow wave tracking approach. This represents a significant improvement over the findings of Yang (J Differ Equ 159(2):447–484, 1999). Next, by using the generalized variational principle, we prove the existence of an explicit entropy solution to (1.1) with \(f(u)=u,\) for all time \(t>0\) and initial mass \(v_0>0,\) where \(u_a(x,t)\) depends on both space and time variables, and also has an algebraic decay in the time variable. This improves the results of many authors such as Ha et al. (J Differ Equ 257(5):1333–1371, 2014), Cheng and Yang (Appl Math Lett 135(6):8, 2023) and Ding and Wang (Quart Appl Math 62(3):509–528, 2004) in various ways. Furthermore, by employing the shadow wave tracking procedure, we discuss the existence of global entropy solution to the generalized two-phase flow model with time-dependent air velocity that extends the recent results of Shen and Sun (J Differ Equ 314:1–55, 2022).

欧拉液滴模型和气流速度不恒定的两相流模型的全局熵解的存在性
本文探讨了气流速度取决于空间和时间变量的广义欧拉液滴模型存在全局熵解的问题。当 \(f(u)=u,\)(1.1) 中的\(\kappa(t)=const.\)和\(u_a(x,t)=const.\),Keita 和 Bourgault (J Math Anal Appl 472(1):1001-1027, 2019)以及 Zhang 等人 (Appl Anal 102(2):576-589, 2023)已经对黎曼问题进行了研究。我们通过影子波追踪方法证明了对于任何严格递增函数 \(f(\cdot )\) 和 \(u_a(x,t)\) ,在初始数据具有温和正则性假设的情况下,熵解 (1.1) 的全局存在性。这比 Yang(J Differ Equ 159(2):447-484,1999)的研究结果有了很大改进。接下来,通过使用广义变分原理,我们证明了在所有时间\(t>0\)和初始质量\(v_0>0,\)下,\(u_a(x,t)\)都依赖于空间和时间变量,并且在时间变量上有代数衰减的(1.1)显式熵解的存在。这从多方面改进了许多学者的结果,如 Ha 等人(J Differ Equ 257(5):1333-1371, 2014)、Cheng 和 Yang(Appl Math Lett 135(6):8, 2023)以及 Ding 和 Wang(Quart Appl Math 62(3):509-528, 2004)。此外,通过采用影波跟踪程序,我们讨论了具有时变气流速度的广义两相流模型全局熵解的存在性,扩展了沈和孙(J Differ Equ 314:1-55, 2022)的最新成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信