MDIC3: Matrix decomposition to infer cell-cell communication

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yi Liu, Yuelei Zhang, Xiao Chang, Xiaoping Liu
{"title":"MDIC3: Matrix decomposition to infer cell-cell communication","authors":"Yi Liu, Yuelei Zhang, Xiao Chang, Xiaoping Liu","doi":"10.1016/j.patter.2023.100911","DOIUrl":null,"url":null,"abstract":"<p>Crosstalk among cells is vital for maintaining the biological function and intactness of systems. Most existing methods for investigating cell-cell communications are based on ligand-receptor (L-R) expression, and they focus on the study between two cells. Thus, the final communication inference results are particularly sensitive to the completeness and accuracy of the prior biological knowledge. Because existing L-R research focuses mainly on humans, most existing methods can only examine cell-cell communication for humans. As far as we know, there is currently no effective method to overcome this species limitation. Here, we propose MDIC3 (matrix decomposition to infer cell-cell communication), an unsupervised tool to investigate cell-cell communication in any species, and the results are not limited by specific L-R pairs or signaling pathways. By comparing it with existing methods for the inference of cell-cell communication, MDIC3 obtained better performance in both humans and mice.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2023.100911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Crosstalk among cells is vital for maintaining the biological function and intactness of systems. Most existing methods for investigating cell-cell communications are based on ligand-receptor (L-R) expression, and they focus on the study between two cells. Thus, the final communication inference results are particularly sensitive to the completeness and accuracy of the prior biological knowledge. Because existing L-R research focuses mainly on humans, most existing methods can only examine cell-cell communication for humans. As far as we know, there is currently no effective method to overcome this species limitation. Here, we propose MDIC3 (matrix decomposition to infer cell-cell communication), an unsupervised tool to investigate cell-cell communication in any species, and the results are not limited by specific L-R pairs or signaling pathways. By comparing it with existing methods for the inference of cell-cell communication, MDIC3 obtained better performance in both humans and mice.

Abstract Image

MDIC3:推断细胞间通信的矩阵分解法
细胞间的串扰对于维持生物功能和系统的完整性至关重要。大多数现有的细胞间通讯研究方法都是基于配体-受体(L-R)的表达,它们主要研究两个细胞之间的通讯。因此,最终的通讯推断结果对先验生物知识的完整性和准确性尤为敏感。由于现有的 L-R 研究主要集中在人类身上,因此大多数现有方法只能研究人类的细胞-细胞通讯。据我们所知,目前还没有有效的方法来克服这一物种限制。在这里,我们提出了 MDIC3(矩阵分解推断细胞间通讯),这是一种无监督的工具,可以研究任何物种的细胞间通讯,而且研究结果不受特定 L-R 对或信号通路的限制。通过与现有的细胞-细胞通讯推断方法进行比较,MDIC3在人类和小鼠身上都获得了更好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信