Tao Du, Shanwu Li, Sudheer Ganisetti, Mathieu Bauchy, Yuanzheng Yue, Morten M Smedskjaer
{"title":"Deciphering the controlling factors for phase transitions in zeolitic imidazolate frameworks","authors":"Tao Du, Shanwu Li, Sudheer Ganisetti, Mathieu Bauchy, Yuanzheng Yue, Morten M Smedskjaer","doi":"10.1093/nsr/nwae023","DOIUrl":null,"url":null,"abstract":"Zeolitic imidazolate frameworks (ZIFs) feature complex phase transitions, including polymorphism, melting, vitrification, and polyamorphism. Experimentally probing their structural evolution during transitions involving amorphous phases is a significant challenge, especially at the medium-range length scale. To overcome this challenge, here we first train a deep learning-based force field to identify the structural characteristics of both crystalline and non-crystalline ZIF phases. This allows us to reproduce the structural evolution trend during the melting of crystals and formation of ZIF glasses at various length scales with an accuracy comparable to that of ab initio molecular dynamics, yet at a much lower computational cost. Based on this, we propose a new structural descriptor, namely, the ring orientation index, to capture the propensity for crystallization of ZIF-4 (Zn(Im)2, Im = C3H3N2−) glasses, as well as for the formation of ZIF-zni (Zn(Im)2) out of the high-density amorphous phase. This crystal formation process is a result of the reorientation of imidazole rings by sacrificing the order of the structure around the zinc-centered tetrahedra. The outcomes of this work are applicable to studying phase transitions in other metal-organic frameworks (MOFs) and may thus guide the design of MOF glasses.","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"29 1","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae023","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Zeolitic imidazolate frameworks (ZIFs) feature complex phase transitions, including polymorphism, melting, vitrification, and polyamorphism. Experimentally probing their structural evolution during transitions involving amorphous phases is a significant challenge, especially at the medium-range length scale. To overcome this challenge, here we first train a deep learning-based force field to identify the structural characteristics of both crystalline and non-crystalline ZIF phases. This allows us to reproduce the structural evolution trend during the melting of crystals and formation of ZIF glasses at various length scales with an accuracy comparable to that of ab initio molecular dynamics, yet at a much lower computational cost. Based on this, we propose a new structural descriptor, namely, the ring orientation index, to capture the propensity for crystallization of ZIF-4 (Zn(Im)2, Im = C3H3N2−) glasses, as well as for the formation of ZIF-zni (Zn(Im)2) out of the high-density amorphous phase. This crystal formation process is a result of the reorientation of imidazole rings by sacrificing the order of the structure around the zinc-centered tetrahedra. The outcomes of this work are applicable to studying phase transitions in other metal-organic frameworks (MOFs) and may thus guide the design of MOF glasses.
期刊介绍:
National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178.
National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.