{"title":"Effect of Salinity on the Development and Dormancy of Cladonema digitatum","authors":"","doi":"10.1007/s12237-023-01310-x","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Some hydrozoan species are known for their high adaptability and dormancy ability, e.g., <em>Cladonema</em> species, which are also promising model organisms. Since salinity affects the development and distribution of hydrozoan species, it is important to get further understanding of salinity tolerance and dormancy ability of <em>Cladonema</em> species. <em>Cladonema digitatum</em> is a cryptic species and is discovered only in artificial environments. In this study, multiple experiments have been conducted to determine how salinity affects the development of <em>C. digitatum</em> polyps and medusae, to describe the dormancy and recovery of the <em>C. digitatum</em> polyps, and to find the possible prevention and disposal protocol for the occurrence of <em>Cladonema</em> in artificial environments. As results, salinity range of 35–40 ppt was optimal for <em>C. digitatum</em> polyps, while <em>C. digitatum</em> medusae lived best in 30–35 ppt; <em>C. digitatum</em> would form menonts at 15, 50–60 ppt, revive and change their survival strategies after salinity upturned to 35 ppt, which could enhance their tolerance and adaptability. <em>Cladonema digitatum</em> medusae also showed different death rates when faced with sharp hypersaline and hyposaline stress. In summary, this research provided ecological information about salinity range and dormancy ability of <em>C. digitatum</em>, which not only facilitated tracing the wild habitats of the <em>C. digitatum</em>, but also provided the theoretical basic of elimination and prevention of <em>Cladonema</em> species intrusion and breeding conservation in the laboratory.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"29 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuaries and Coasts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12237-023-01310-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Some hydrozoan species are known for their high adaptability and dormancy ability, e.g., Cladonema species, which are also promising model organisms. Since salinity affects the development and distribution of hydrozoan species, it is important to get further understanding of salinity tolerance and dormancy ability of Cladonema species. Cladonema digitatum is a cryptic species and is discovered only in artificial environments. In this study, multiple experiments have been conducted to determine how salinity affects the development of C. digitatum polyps and medusae, to describe the dormancy and recovery of the C. digitatum polyps, and to find the possible prevention and disposal protocol for the occurrence of Cladonema in artificial environments. As results, salinity range of 35–40 ppt was optimal for C. digitatum polyps, while C. digitatum medusae lived best in 30–35 ppt; C. digitatum would form menonts at 15, 50–60 ppt, revive and change their survival strategies after salinity upturned to 35 ppt, which could enhance their tolerance and adaptability. Cladonema digitatum medusae also showed different death rates when faced with sharp hypersaline and hyposaline stress. In summary, this research provided ecological information about salinity range and dormancy ability of C. digitatum, which not only facilitated tracing the wild habitats of the C. digitatum, but also provided the theoretical basic of elimination and prevention of Cladonema species intrusion and breeding conservation in the laboratory.
期刊介绍:
Estuaries and Coasts is the journal of the Coastal and Estuarine Research Federation (CERF). Begun in 1977 as Chesapeake Science, the journal has gradually expanded its scope and circulation. Today, the journal publishes scholarly manuscripts on estuarine and near coastal ecosystems at the interface between the land and the sea where there are tidal fluctuations or sea water is diluted by fresh water. The interface is broadly defined to include estuaries and nearshore coastal waters including lagoons, wetlands, tidal fresh water, shores and beaches, but not the continental shelf. The journal covers research on physical, chemical, geological or biological processes, as well as applications to management of estuaries and coasts. The journal publishes original research findings, reviews and perspectives, techniques, comments, and management applications. Estuaries and Coasts will consider properly carried out studies that present inconclusive findings or document a failed replication of previously published work. Submissions that are primarily descriptive, strongly place-based, or only report on development of models or new methods without detailing their applications fall outside the scope of the journal.