Efficiently unbiased solar-to-ammonia conversion by photoelectrochemical Cu/C/Si-TiO2 tandems

IF 20.2 1区 化学 Q1 CHEMISTRY, PHYSICAL
Jingjing Ding , Yanhong Lyu , Huaijuan Zhou , Bernt Johannessen , Xiaoran Zhang , Jianyun Zheng , San Ping Jiang , Shuangyin Wang
{"title":"Efficiently unbiased solar-to-ammonia conversion by photoelectrochemical Cu/C/Si-TiO2 tandems","authors":"Jingjing Ding ,&nbsp;Yanhong Lyu ,&nbsp;Huaijuan Zhou ,&nbsp;Bernt Johannessen ,&nbsp;Xiaoran Zhang ,&nbsp;Jianyun Zheng ,&nbsp;San Ping Jiang ,&nbsp;Shuangyin Wang","doi":"10.1016/j.apcatb.2024.123735","DOIUrl":null,"url":null,"abstract":"<div><p>Photoelectrochemical nitrate reduction reaction (PEC NO<sub>3</sub>RR) is of interest as a promising route to directly realizing the solar-to-ammonia (NH<sub>3</sub>) conversion but the limited efficiency and high applied bias voltage hamper its commercial prospects. Here, we report a bias-free photoelectrochemical cell for PEC NO<sub>3</sub>RR in aqueous conditions, achieving a substantial NH<sub>3</sub> yield rate of 13.1 μmol·h<sup>−1</sup>·cm<sup>−2</sup>, high faradaic efficiency of 93.8%, and recorded solar-to-NH<sub>3</sub> conversion of ∼1.5% under 1 sun illumination. A hierarchical-structured Si-based photocathode with Cu<sup>+</sup>/Cu<sup>2+</sup><span>-containing Cu nanoparticles cocatalysts achieves a highly efficient PEC NO</span><sub>3</sub>RR with NH<sub>3</sub> yield rate of 115.3 μmol·h<sup>−1</sup>·cm<sup>−2</sup><span> in a three-electrode system. Integrating operando characterizations and systematic PEC measurements, the formation of Lewis acid sites on Cu nanoparticles by accepting the photoinduced electrons is the dominant factor for facilitating the absorption and hydrogenation of nitrate. This work will guide the development of a robust, high-performance, and unbiased PEC device for sustainable solar-to-NH</span><sub>3</sub>/other fuels conversion.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337324000468","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photoelectrochemical nitrate reduction reaction (PEC NO3RR) is of interest as a promising route to directly realizing the solar-to-ammonia (NH3) conversion but the limited efficiency and high applied bias voltage hamper its commercial prospects. Here, we report a bias-free photoelectrochemical cell for PEC NO3RR in aqueous conditions, achieving a substantial NH3 yield rate of 13.1 μmol·h−1·cm−2, high faradaic efficiency of 93.8%, and recorded solar-to-NH3 conversion of ∼1.5% under 1 sun illumination. A hierarchical-structured Si-based photocathode with Cu+/Cu2+-containing Cu nanoparticles cocatalysts achieves a highly efficient PEC NO3RR with NH3 yield rate of 115.3 μmol·h−1·cm−2 in a three-electrode system. Integrating operando characterizations and systematic PEC measurements, the formation of Lewis acid sites on Cu nanoparticles by accepting the photoinduced electrons is the dominant factor for facilitating the absorption and hydrogenation of nitrate. This work will guide the development of a robust, high-performance, and unbiased PEC device for sustainable solar-to-NH3/other fuels conversion.

Abstract Image

通过光电化学 Cu/C/Si-TiO2 串联实现高效无偏的太阳能氨转化
光电化学硝酸盐还原反应(PEC NO3RR)是直接实现太阳能转化为氨气(NH3)的一条有前途的途径,但其有限的效率和较高的外加偏置电压阻碍了其商业前景。在此,我们报告了一种在水溶液条件下用于 PEC NO3RR 的无偏压光电化学电池,其 NH3 产率高达 13.1 μmol-h-1-cm-2,远红外效率高达 93.8%,在太阳光照射下的太阳能-NH3 转化率约为 1.5%。分层结构的硅基光电阴极与含 Cu+/Cu2+ 的铜纳米颗粒协同催化剂在三电极系统中实现了高效的 PEC NO3RR,NH3 产率达到 115.3 μmol-h-1-cm-2。综合操作表征和系统的 PEC 测量,Cu 纳米粒子上通过接受光诱导电子形成的路易斯酸位点是促进硝酸盐吸收和氢化的主要因素。这项工作将指导开发一种稳健、高性能和无偏的 PEC 设备,用于太阳能到 NH3/其他燃料的可持续转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Catalysis B: Environmental
Applied Catalysis B: Environmental 环境科学-工程:化工
CiteScore
38.60
自引率
6.30%
发文量
1117
审稿时长
24 days
期刊介绍: Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including: 1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources. 2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes. 3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts. 4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells. 5.Catalytic reactions that convert wastes into useful products. 6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts. 7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems. 8.New catalytic combustion technologies and catalysts. 9.New catalytic non-enzymatic transformations of biomass components. The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信