Non-Asymptotic Confidence Estimation of the Autoregressive Process Paremeters in the Case of an Unknown Noise Variance

IF 0.5 Q4 PHYSICS, MULTIDISCIPLINARY
S. E. Vorobeychikov, A. V. Pupkov
{"title":"Non-Asymptotic Confidence Estimation of the Autoregressive Process Paremeters in the Case of an Unknown Noise Variance","authors":"S. E. Vorobeychikov, A. V. Pupkov","doi":"10.3103/s8756699023040106","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A non-asymptotic procedure of constructing the confidence region of the parameter of the <span>\\(p\\)</span>-th order Gaussian autoregressive process AR(p) in the case of an unknown process noise variance is considered. The confidence estimation procedure is based on the martingale property of the numerator of estimate deviation of the least square technique (LST). The results of numerical modeling are presented.</p>","PeriodicalId":44919,"journal":{"name":"Optoelectronics Instrumentation and Data Processing","volume":"244 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optoelectronics Instrumentation and Data Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s8756699023040106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A non-asymptotic procedure of constructing the confidence region of the parameter of the \(p\)-th order Gaussian autoregressive process AR(p) in the case of an unknown process noise variance is considered. The confidence estimation procedure is based on the martingale property of the numerator of estimate deviation of the least square technique (LST). The results of numerical modeling are presented.

未知噪声方差情况下自回归过程帕雷米特的非渐近可信度估计
摘要 在未知过程噪声方差的情况下,考虑了构建 \(p\)-th 阶高斯自回归过程 AR(p)参数置信区域的非渐近过程。置信度估计程序基于最小平方技术(LST)估计偏差分子的马氏特性。文中给出了数值建模的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
50.00%
发文量
16
期刊介绍: The scope of Optoelectronics, Instrumentation and Data Processing encompasses, but is not restricted to, the following areas: analysis and synthesis of signals and images; artificial intelligence methods; automated measurement systems; physicotechnical foundations of micro- and optoelectronics; optical information technologies; systems and components; modelling in physicotechnical research; laser physics applications; computer networks and data transmission systems. The journal publishes original papers, reviews, and short communications in order to provide the widest possible coverage of latest research and development in its chosen field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信