{"title":"Fe-Zn alloy, a new biodegradable material capable of reducing ROS and inhibiting oxidative stress","authors":"Shuaikang Yang, Weiqiang Wang, Yanan Xu, Yonghui Yuan, Shengzhi Hao","doi":"10.1093/rb/rbae002","DOIUrl":null,"url":null,"abstract":"Fe-based biodegradable materials have attracted significant attention due to their exceptional mechanical properties and favorable biocompatibility. Currently, research on Fe-based materials mainly focuses on regulating the degradation rate. However, excessive release of Fe ions during material degradation will induce the generation of reactive oxygen species (ROS), leading to oxidative stress and ferroptosis. Therefore, the control of ROS release and the improvement of biocompatibility for Fe-based materials are very important. In this study, new Fe-Zn alloys were prepared by electrodeposition with the intention of using Zn as an antioxidant to reduce oxidative damage during alloy degradation. Initially, the impact of three potential degradation ions (Fe2+, Fe3+, Zn2+) from the Fe-Zn alloy on human endothelial cells’ (ECs) activity and migration ability was investigated. Subsequently, cell adhesion, cell activity, ROS production, and DNA damage were assessed at various locations surrounding the alloy. Finally, the influence of different concentrations of Zn2+ in the medium on cell viability and ROS production was evaluated. High levels of ROS exhibited evident toxic effects on ECs and promoted DNA damage. As an antioxidant, Zn2+ effectively reduced ROS production around Fe and improved the cell viability on its surface at a concentration of 0.04 mmol/L. These findings demonstrate that Fe-Zn alloy can attenuate the ROS generated from Fe degradation thereby enhancing cytocompatibility.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"17 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Fe-based biodegradable materials have attracted significant attention due to their exceptional mechanical properties and favorable biocompatibility. Currently, research on Fe-based materials mainly focuses on regulating the degradation rate. However, excessive release of Fe ions during material degradation will induce the generation of reactive oxygen species (ROS), leading to oxidative stress and ferroptosis. Therefore, the control of ROS release and the improvement of biocompatibility for Fe-based materials are very important. In this study, new Fe-Zn alloys were prepared by electrodeposition with the intention of using Zn as an antioxidant to reduce oxidative damage during alloy degradation. Initially, the impact of three potential degradation ions (Fe2+, Fe3+, Zn2+) from the Fe-Zn alloy on human endothelial cells’ (ECs) activity and migration ability was investigated. Subsequently, cell adhesion, cell activity, ROS production, and DNA damage were assessed at various locations surrounding the alloy. Finally, the influence of different concentrations of Zn2+ in the medium on cell viability and ROS production was evaluated. High levels of ROS exhibited evident toxic effects on ECs and promoted DNA damage. As an antioxidant, Zn2+ effectively reduced ROS production around Fe and improved the cell viability on its surface at a concentration of 0.04 mmol/L. These findings demonstrate that Fe-Zn alloy can attenuate the ROS generated from Fe degradation thereby enhancing cytocompatibility.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.