Leontine Aarnoudse , Johan Kon , Wataru Ohnishi , Maurice Poot , Paul Tacx , Nard Strijbosch , Tom Oomen
{"title":"Control-relevant neural networks for feedforward control with preview: Applied to an industrial flatbed printer","authors":"Leontine Aarnoudse , Johan Kon , Wataru Ohnishi , Maurice Poot , Paul Tacx , Nard Strijbosch , Tom Oomen","doi":"10.1016/j.ifacsc.2024.100241","DOIUrl":null,"url":null,"abstract":"<div><p>The performance of feedforward control depends strongly on its ability to compensate for reproducible disturbances. The aim of this paper is to develop a systematic framework for artificial neural networks (ANN) for feedforward control. The method involves three aspects: a new criterion that emphasizes the closed-loop control objective, inclusion of preview to deal with delays and non-minimum phase dynamics, and enabling the use of an iterative learning algorithm to generate training data in view of addressing generalization errors. The approach is illustrated through simulations and experiments on an industrial flatbed printer.</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"27 ","pages":"Article 100241"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468601824000026/pdfft?md5=4202aaa66e7d1736bf952129d8b99de9&pid=1-s2.0-S2468601824000026-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601824000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The performance of feedforward control depends strongly on its ability to compensate for reproducible disturbances. The aim of this paper is to develop a systematic framework for artificial neural networks (ANN) for feedforward control. The method involves three aspects: a new criterion that emphasizes the closed-loop control objective, inclusion of preview to deal with delays and non-minimum phase dynamics, and enabling the use of an iterative learning algorithm to generate training data in view of addressing generalization errors. The approach is illustrated through simulations and experiments on an industrial flatbed printer.