Control-relevant neural networks for feedforward control with preview: Applied to an industrial flatbed printer

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Leontine Aarnoudse , Johan Kon , Wataru Ohnishi , Maurice Poot , Paul Tacx , Nard Strijbosch , Tom Oomen
{"title":"Control-relevant neural networks for feedforward control with preview: Applied to an industrial flatbed printer","authors":"Leontine Aarnoudse ,&nbsp;Johan Kon ,&nbsp;Wataru Ohnishi ,&nbsp;Maurice Poot ,&nbsp;Paul Tacx ,&nbsp;Nard Strijbosch ,&nbsp;Tom Oomen","doi":"10.1016/j.ifacsc.2024.100241","DOIUrl":null,"url":null,"abstract":"<div><p>The performance of feedforward control depends strongly on its ability to compensate for reproducible disturbances. The aim of this paper is to develop a systematic framework for artificial neural networks (ANN) for feedforward control. The method involves three aspects: a new criterion that emphasizes the closed-loop control objective, inclusion of preview to deal with delays and non-minimum phase dynamics, and enabling the use of an iterative learning algorithm to generate training data in view of addressing generalization errors. The approach is illustrated through simulations and experiments on an industrial flatbed printer.</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"27 ","pages":"Article 100241"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468601824000026/pdfft?md5=4202aaa66e7d1736bf952129d8b99de9&pid=1-s2.0-S2468601824000026-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601824000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of feedforward control depends strongly on its ability to compensate for reproducible disturbances. The aim of this paper is to develop a systematic framework for artificial neural networks (ANN) for feedforward control. The method involves three aspects: a new criterion that emphasizes the closed-loop control objective, inclusion of preview to deal with delays and non-minimum phase dynamics, and enabling the use of an iterative learning algorithm to generate training data in view of addressing generalization errors. The approach is illustrated through simulations and experiments on an industrial flatbed printer.

用于带预览的前馈控制的控制相关神经网络:应用于工业平板打印机
前馈控制的性能在很大程度上取决于其补偿可重现干扰的能力。本文旨在为用于前馈控制的人工神经网络(ANN)开发一个系统框架。该方法涉及三个方面:强调闭环控制目标的新标准;包含处理延迟和非最小相位动态的预览;以及使用迭代学习算法生成训练数据,以解决泛化误差问题。该方法通过在工业平板打印机上的模拟和实验进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信