Overexpression of black rice OsC1 confers tissue-specific anthocyanin accumulation in indica rice cv. Kasalath and its potential use as a visible marker in rice transformation
{"title":"Overexpression of black rice OsC1 confers tissue-specific anthocyanin accumulation in indica rice cv. Kasalath and its potential use as a visible marker in rice transformation","authors":"Chotipa Sakulsingharoj , Supachai Vuttipongchaikij , Kanogporn Khammona , Lalita Narachasima , Roypim Sukkasem , Saengtong Pongjaroenkit , Varaporn Sangtong , Srimek Chowpongpang","doi":"10.1016/j.plgene.2024.100446","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Anthocyanin </span>biosynthesis<span>, a process regulated by distinct MYB and MYC transcription factors, plays a crucial role in determining pigmentation in various tissue of plants. This study aimed to investigate the impact of overexpressing the </span></span><em>OsC1</em><span><span> gene from black rice, encoding a MYB transcription factor, on anthocyanin pigmentation in red indica rice cv. Kasalath. Anthocyanin pigmentation was readily observed as purple spots in calli and as purple shoot tips and purple leaf sheath in </span>transgenic seedlings. We confirmed the presence of the transgene using GUS assay and PCR analysis, and the pigmentation segregated following a 3:1 Mendelian ratio. T</span><sub>0</sub> and T<sub>1</sub><span> transgenic plants<span> exhibits anthocyanin accumulation in various tissues including leaf sheaths, auricles, nodes, stigma, apiculus and awns, excluding the pericarp. Notably, the pigmentation in node tissues has not been previously reported for the </span></span><em>OsC1</em> gene, and this gene does not involve in pericarp pigmentation. RT-PCR analysis of transgenic seedlings demonstrated that the overexpression of the <em>OsC1</em> gene upregulated anthocyanin structural genes, particularly <em>OsDFR,</em> leading to anthocyanin accumulation. Intriguingly, the absence of <em>OsB2</em> expression, encoding a MYC transcription factor, in transgenic seedlings suggests the involvement of alternative MYC factors in purple leaf sheaths. This study not only expands our understanding of <em>OsC1</em>'s role in tissue specific anthocyanin pigmentation but also proposes <em>OsC1</em> as a potential visible marker in rice transformation. Utilizing <em>OsC1</em> as a marker provides an alternative approach to address concerns related to antibiotic-resistant genes while providing visually striking pigmentation.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"37 ","pages":"Article 100446"},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407324000015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Anthocyanin biosynthesis, a process regulated by distinct MYB and MYC transcription factors, plays a crucial role in determining pigmentation in various tissue of plants. This study aimed to investigate the impact of overexpressing the OsC1 gene from black rice, encoding a MYB transcription factor, on anthocyanin pigmentation in red indica rice cv. Kasalath. Anthocyanin pigmentation was readily observed as purple spots in calli and as purple shoot tips and purple leaf sheath in transgenic seedlings. We confirmed the presence of the transgene using GUS assay and PCR analysis, and the pigmentation segregated following a 3:1 Mendelian ratio. T0 and T1 transgenic plants exhibits anthocyanin accumulation in various tissues including leaf sheaths, auricles, nodes, stigma, apiculus and awns, excluding the pericarp. Notably, the pigmentation in node tissues has not been previously reported for the OsC1 gene, and this gene does not involve in pericarp pigmentation. RT-PCR analysis of transgenic seedlings demonstrated that the overexpression of the OsC1 gene upregulated anthocyanin structural genes, particularly OsDFR, leading to anthocyanin accumulation. Intriguingly, the absence of OsB2 expression, encoding a MYC transcription factor, in transgenic seedlings suggests the involvement of alternative MYC factors in purple leaf sheaths. This study not only expands our understanding of OsC1's role in tissue specific anthocyanin pigmentation but also proposes OsC1 as a potential visible marker in rice transformation. Utilizing OsC1 as a marker provides an alternative approach to address concerns related to antibiotic-resistant genes while providing visually striking pigmentation.
Plant GeneAgricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍:
Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.