Automatic patient-ventilator asynchrony detection framework using objective asynchrony definitions

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Lars van de Kamp , Joey Reinders , Bram Hunnekens , Tom Oomen , Nathan van de Wouw
{"title":"Automatic patient-ventilator asynchrony detection framework using objective asynchrony definitions","authors":"Lars van de Kamp ,&nbsp;Joey Reinders ,&nbsp;Bram Hunnekens ,&nbsp;Tom Oomen ,&nbsp;Nathan van de Wouw","doi":"10.1016/j.ifacsc.2023.100236","DOIUrl":null,"url":null,"abstract":"<div><p>Patient-ventilator asynchrony is one of the largest challenges in mechanical ventilation and is associated with prolonged ICU stay and increased mortality. The aim of this paper is to automatically detect and classify the different types of patient-ventilator asynchronies during a patient’s breath using the typically available data on commercially available ventilators. This is achieved by a detection and classification framework using an objective definition of asynchrony and a supervised learning approach. The achieved detection performance of the near-real time framework on a clinical dataset is a significant improvement over current clinical practice, therewith and, this framework has the potential to significantly improve the patient comfort and treatment outcomes.</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"27 ","pages":"Article 100236"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468601823000226/pdfft?md5=347ad84c2607dbfc8472655821dd9f8a&pid=1-s2.0-S2468601823000226-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601823000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Patient-ventilator asynchrony is one of the largest challenges in mechanical ventilation and is associated with prolonged ICU stay and increased mortality. The aim of this paper is to automatically detect and classify the different types of patient-ventilator asynchronies during a patient’s breath using the typically available data on commercially available ventilators. This is achieved by a detection and classification framework using an objective definition of asynchrony and a supervised learning approach. The achieved detection performance of the near-real time framework on a clinical dataset is a significant improvement over current clinical practice, therewith and, this framework has the potential to significantly improve the patient comfort and treatment outcomes.

使用客观异步定义的患者-呼吸机异步自动检测框架
患者与呼吸机不同步是机械通气中最大的挑战之一,与重症监护室住院时间延长和死亡率增加有关。本文旨在利用市售呼吸机的典型可用数据,自动检测和分类患者呼吸过程中不同类型的患者-呼吸机不同步现象。检测和分类框架采用了异步的客观定义和监督学习方法。近实时框架在临床数据集上实现的检测性能明显优于当前的临床实践,因此,该框架有望显著改善患者的舒适度和治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信