Unconditionally monotone and globally stable difference schemes for the Fisher equation

P. P. Matus, D. Pylak
{"title":"Unconditionally monotone and globally stable difference schemes for the Fisher equation","authors":"P. P. Matus, D. Pylak","doi":"10.29235/1561-8323-2023-67-6-454-459","DOIUrl":null,"url":null,"abstract":"In this paper, we construct and study unconditionally monotone and globally stable difference schemes for the Fisher equation. It has been shown that constructed schemes inherit the stability property of the exact solution: 0 ≤ u(x, t) ≤ 1, (x, t) ∈ QT = {(x, t) : 0 ≤ x ≤ l, 0 ≤ t < +∞} for a given input data of the problem. The unconditional monotonicity of the difference schemes is proved and the a priori estimate is obtained in the uniform norm for the difference solution. The stable behavior of the difference solution in the nonlinear case takes place under slightly more stringent constraints on the input data: 0,5 ≤ u0 (x), µ1(t), µ2(t) ≤ 1.","PeriodicalId":11283,"journal":{"name":"Doklady of the National Academy of Sciences of Belarus","volume":"76 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady of the National Academy of Sciences of Belarus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2023-67-6-454-459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we construct and study unconditionally monotone and globally stable difference schemes for the Fisher equation. It has been shown that constructed schemes inherit the stability property of the exact solution: 0 ≤ u(x, t) ≤ 1, (x, t) ∈ QT = {(x, t) : 0 ≤ x ≤ l, 0 ≤ t < +∞} for a given input data of the problem. The unconditional monotonicity of the difference schemes is proved and the a priori estimate is obtained in the uniform norm for the difference solution. The stable behavior of the difference solution in the nonlinear case takes place under slightly more stringent constraints on the input data: 0,5 ≤ u0 (x), µ1(t), µ2(t) ≤ 1.
费雪方程的无条件单调和全局稳定差分方案
本文构建并研究了费雪方程的无条件单调全局稳定差分方案。研究表明,所构建的方案继承了精确解的稳定性:0 ≤ u(x, t) ≤ 1, (x, t) ∈ QT = {(x, t) :0 ≤ x ≤ l, 0 ≤ t < +∞} 对于问题的给定输入数据。证明了差分方案的无条件单调性,并在差分解的统一规范中获得了先验估计。在非线性情况下,差分解的稳定行为发生在对输入数据略微严格的约束条件下:0,5 ≤ u0 (x), µ1(t), µ2(t) ≤ 1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信