{"title":"Field Investigation of Water Infiltration into a Three-Layer Capillary Barrier Landfill Cover System Using Local Soils and Construction Waste","authors":"Yuedong Wu, Jincheng Ren, Jian Liu","doi":"10.3390/buildings14010139","DOIUrl":null,"url":null,"abstract":"In response to the rapid urban expansion and the burgeoning number of landfill sites, managing water infiltration in these areas has become a critical challenge, especially in cities like Shenzhen, Hong Kong, and Singapore where traditional cover materials such as silt, clayey gravel, and sand are scarce. A three-layer (silt/gravelly sand/clay) capillary barrier cover system has been proposed to address this issue in humid climates. As an alternative to scarce traditional materials, using local soils and construction waste (CW) for this system presents a viable solution. However, the real-world performance of this adapted three-layer system, constructed with local soils and CW under natural rainfall conditions, remains to be fully evaluated. This paper presents a field test evaluating the water infiltration behavior of a three-layer capillary barrier landfill cover system under natural conditions. The tri-layered system is comprised of a 0.6 m loose local unscreened soil layer, covered by a 0.4 m CW layer and topped by a 0.8 m heavily compacted local screened soil layer. Monitoring findings reveal that, during the wet season, infiltration through the top two layers was staved off until the third rainfall, after which these layers retained moisture until 15 September 2016. The fluctuation in pore water pressure in the topmost layers showed each rainfall was contingent not only on the day’s precipitation but also the hydraulic state. Beyond the hydraulic state’s influence, a deeper tensiometer showed resulted in a diminished correlation between the surge in pore water pressure and daily rainfall. This declining correlation with depth can be attributed to the capillary effect and the reduced permeability of the screened soil layer. Rainfall patterns significantly affect percolation, with the combination of a short-duration, intense rainfall and prolonged weak rainfall resulting in a marked increase in percolation. In the foundational screened soil layer, the pore water pressure remained relatively low, with the cumulative percolation over six months (June to December) registering approximately 10 mm. These findings suggest a promising performance of the three-layer capillary barrier cover system, integrating local soils and CW, in the year of the study conducted in a humid environment.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"39 10","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010139","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the rapid urban expansion and the burgeoning number of landfill sites, managing water infiltration in these areas has become a critical challenge, especially in cities like Shenzhen, Hong Kong, and Singapore where traditional cover materials such as silt, clayey gravel, and sand are scarce. A three-layer (silt/gravelly sand/clay) capillary barrier cover system has been proposed to address this issue in humid climates. As an alternative to scarce traditional materials, using local soils and construction waste (CW) for this system presents a viable solution. However, the real-world performance of this adapted three-layer system, constructed with local soils and CW under natural rainfall conditions, remains to be fully evaluated. This paper presents a field test evaluating the water infiltration behavior of a three-layer capillary barrier landfill cover system under natural conditions. The tri-layered system is comprised of a 0.6 m loose local unscreened soil layer, covered by a 0.4 m CW layer and topped by a 0.8 m heavily compacted local screened soil layer. Monitoring findings reveal that, during the wet season, infiltration through the top two layers was staved off until the third rainfall, after which these layers retained moisture until 15 September 2016. The fluctuation in pore water pressure in the topmost layers showed each rainfall was contingent not only on the day’s precipitation but also the hydraulic state. Beyond the hydraulic state’s influence, a deeper tensiometer showed resulted in a diminished correlation between the surge in pore water pressure and daily rainfall. This declining correlation with depth can be attributed to the capillary effect and the reduced permeability of the screened soil layer. Rainfall patterns significantly affect percolation, with the combination of a short-duration, intense rainfall and prolonged weak rainfall resulting in a marked increase in percolation. In the foundational screened soil layer, the pore water pressure remained relatively low, with the cumulative percolation over six months (June to December) registering approximately 10 mm. These findings suggest a promising performance of the three-layer capillary barrier cover system, integrating local soils and CW, in the year of the study conducted in a humid environment.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates