{"title":"Study on Numerical Simulation of Arch Mechanism of Bridge Pile Foundation","authors":"Zhanhui Qu, Zemin Han, Haoyu Tang, Jiangbo Xu, Heping Wang, Yifan Liu","doi":"10.3390/buildings14010146","DOIUrl":null,"url":null,"abstract":"Bridges are situated in a complex area with geological conditions that are challenging for engineering. It has been observed that certain pile foundations of bridges have been uplifted to varying degrees by up to 309 mm. This has a significant impact on the bridge’s operation and driving safety. The causal mechanism of the bridge pile foundation arch is analyzed through a theoretical analysis and a Plaxis 3D (v.2013) finite element software simulation. The influence of the ground stress and goaf on the bridge pile foundation under different working conditions is studied. The findings indicate that the uplift of the bridge pile foundation due to an equivalent ground stress is the largest, reaching approximately 300 mm in the bridge valley area. Additionally, the uplift of the non-bridge area in the goaf is greater than that of the bridge pile foundation. These results suggest that ground stress is the primary cause of the arching of a bridge pile foundation.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"32 18","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010146","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bridges are situated in a complex area with geological conditions that are challenging for engineering. It has been observed that certain pile foundations of bridges have been uplifted to varying degrees by up to 309 mm. This has a significant impact on the bridge’s operation and driving safety. The causal mechanism of the bridge pile foundation arch is analyzed through a theoretical analysis and a Plaxis 3D (v.2013) finite element software simulation. The influence of the ground stress and goaf on the bridge pile foundation under different working conditions is studied. The findings indicate that the uplift of the bridge pile foundation due to an equivalent ground stress is the largest, reaching approximately 300 mm in the bridge valley area. Additionally, the uplift of the non-bridge area in the goaf is greater than that of the bridge pile foundation. These results suggest that ground stress is the primary cause of the arching of a bridge pile foundation.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates