Israr Ahmad, Javed Rashid, Muhammad Faheem, Arslan Akram, Nafees Ahmad Khan, Riaz ul Amin
{"title":"Autism spectrum disorder detection using facial images: A performance comparison of pretrained convolutional neural networks","authors":"Israr Ahmad, Javed Rashid, Muhammad Faheem, Arslan Akram, Nafees Ahmad Khan, Riaz ul Amin","doi":"10.1049/htl2.12073","DOIUrl":null,"url":null,"abstract":"<p>Autism spectrum disorder (ASD) is a complex psychological syndrome characterized by persistent difficulties in social interaction, restricted behaviours, speech, and nonverbal communication. The impacts of this disorder and the severity of symptoms vary from person to person. In most cases, symptoms of ASD appear at the age of 2 to 5 and continue throughout adolescence and into adulthood. While this disorder cannot be cured completely, studies have shown that early detection of this syndrome can assist in maintaining the behavioural and psychological development of children. Experts are currently studying various machine learning methods, particularly convolutional neural networks, to expedite the screening process. Convolutional neural networks are considered promising frameworks for the diagnosis of ASD. This study employs different pre-trained convolutional neural networks such as ResNet34, ResNet50, AlexNet, MobileNetV2, VGG16, and VGG19 to diagnose ASD and compared their performance. Transfer learning was applied to every model included in the study to achieve higher results than the initial models. The proposed ResNet50 model achieved the highest accuracy, 92%, compared to other transfer learning models. The proposed method also outperformed the state-of-the-art models in terms of accuracy and computational cost.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"11 4","pages":"227-239"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/htl2.12073","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Autism spectrum disorder (ASD) is a complex psychological syndrome characterized by persistent difficulties in social interaction, restricted behaviours, speech, and nonverbal communication. The impacts of this disorder and the severity of symptoms vary from person to person. In most cases, symptoms of ASD appear at the age of 2 to 5 and continue throughout adolescence and into adulthood. While this disorder cannot be cured completely, studies have shown that early detection of this syndrome can assist in maintaining the behavioural and psychological development of children. Experts are currently studying various machine learning methods, particularly convolutional neural networks, to expedite the screening process. Convolutional neural networks are considered promising frameworks for the diagnosis of ASD. This study employs different pre-trained convolutional neural networks such as ResNet34, ResNet50, AlexNet, MobileNetV2, VGG16, and VGG19 to diagnose ASD and compared their performance. Transfer learning was applied to every model included in the study to achieve higher results than the initial models. The proposed ResNet50 model achieved the highest accuracy, 92%, compared to other transfer learning models. The proposed method also outperformed the state-of-the-art models in terms of accuracy and computational cost.
期刊介绍:
Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.