F. Guo, YM Xie, Xiaoqi Huang, Feng Li, Baosheng Liu, Xinwei Dong, Jin Zhou
{"title":"Significant Enhancement of Perpendicular Magnetic Anisotropy in Fe/MoSi2N4 by Hole Doping","authors":"F. Guo, YM Xie, Xiaoqi Huang, Feng Li, Baosheng Liu, Xinwei Dong, Jin Zhou","doi":"10.1088/1361-6463/ad1cbf","DOIUrl":null,"url":null,"abstract":"\n This study proposes a novel approach to enhanced the perpendicular magnetic anisotropy (PMA) of Fe adsorbed on a MoSi2N4 substrate through hole doping. First principles calculations are employed to investigate the PMA of freestanding Fe and Fe/MoSi2N4 complex system. It is found that the PMA of Fe atom slightly increases from freestanding Fe monolayer to the Fe/MoSi2N4 system, which is attributed to the overlap between Fe-3d and N-2p orbitals. More interestingly, it is found that the PMA of Fe atoms in Fe/MoSi2N4 can be further enhanced by hole doping, which enables the PMA to increase significantly, up to four times the original value. This finding provides a promising way to enhance the PMA in two-dimensional spintronic devices. These results offering potential applications in developing advanced Two-dimensional (2D) spintronic devices.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad1cbf","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a novel approach to enhanced the perpendicular magnetic anisotropy (PMA) of Fe adsorbed on a MoSi2N4 substrate through hole doping. First principles calculations are employed to investigate the PMA of freestanding Fe and Fe/MoSi2N4 complex system. It is found that the PMA of Fe atom slightly increases from freestanding Fe monolayer to the Fe/MoSi2N4 system, which is attributed to the overlap between Fe-3d and N-2p orbitals. More interestingly, it is found that the PMA of Fe atoms in Fe/MoSi2N4 can be further enhanced by hole doping, which enables the PMA to increase significantly, up to four times the original value. This finding provides a promising way to enhance the PMA in two-dimensional spintronic devices. These results offering potential applications in developing advanced Two-dimensional (2D) spintronic devices.
期刊介绍:
This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.